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We develop and estimate a dynamic structural model of demand in a setting where product characteristics
endogenously evolve in response to aggregate consumer choices. The direction and speed of innovation are in-
efficient because individuals do not account for their influence on innovation, creating an externality. Our ap-
plication focuses on drugs invented to combat human immunodeficiency virus; they differ in their efficacy and
propensity to cause side effects. We find that the externality is quantitatively important; temporarily subsidiz-
ing the experimental treatment would have increased average social welfare by improving average health and
would have reduced inequality in lifetime utility across health groups.

1. introduction

Economists have long recognized that innovation, including the entry of new products and
the exit of obsolete ones, is not only determined by science and luck, but also responds to
latent consumer demand (Hicks, 1932). Sometimes referred to as demand-pull innovation
(Schmookler, 1966; Scherer, 1982), the responsiveness of innovation to demand generates an
externality because the benefits an individual indirectly confers upon all (other) future in-
dividuals through his effect on innovative activity are not reflected in the price he pays for
the product in the decentralized economy (Jovanovic and MacDonald, 1994; Waldfogel, 2003;
Finkelstein, 2004). This article develops and estimates a dynamic structural model of demand
that endogenizes how consumer choices affect product innovation; we quantify the magni-
tude of this externality in a rapidly evolving medical treatment market for human immunod-
eficiency virus (HIV), where innovation was largely driven by experimental clinical trials, and
conduct a counterfactual analysis of subsidizing such trials to improve social welfare.

The data set for this study extracts observations from a biennial panel from four Ameri-
can cities that tracks a replenished panel of individuals along with the path of innovations in
HIV treatments for over 20 years, from when this market emerged around 1984, until it ma-
tured. During this period, frequent incremental innovations in medication were punctuated
by sporadic breakthroughs, and occasionally new inferior treatments. Up to seven treatments
entered the market in any given time, giving consumers a choice between multiple commer-
cially available treatments with differential characteristics, or participating in clinical trials of-
fering experimental treatments. The data include an objective, continuous measure of health
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based on immune system status obtained from blood tests administered with the survey every
six months. They show that consumers exhibit substantial heterogeneity measured in terms of
their health and demographics, including age, race, education, labor force participation, and
income. These factors affect their treatment of choice and hence aggregate demand. Section 2
provides a brief historical background and motivates the model structure with patterns ob-
served in the data.

Section 3 describes the generic model of dynamic demand and product innovation upon
which our application is based. In the model, consumers choose between taking a commer-
cially available treatment, joining a clinical trial to access an experimental treatment, or not
being treated. Their choices reflect a trade-off between multiple treatment attributes: efficacy,
which improves long-run health, and current-period side effects. Each period, new treatments
become available and treatments in low demand exit the market. The number and type of new
treatments are governed by a stochastic process parameterized by the shares of consumers
who opt for available treatments and those who opt for clinical trials. When making private
medication choices, individual consumers do not take into account their impact on aggregate
demand, generating an externality. This externality complicates the computation of equilib-
rium: it cannot be recast as a dynamic programming problem solved by a social planner, and
in addition is rendered nonstationary by ongoing technological progress.

Section 4 adapts the generic model to our empirical application, by modeling the uncer-
tainty consumers face and how it is resolved, along with the parameterization used in esti-
mation. The empirical model includes the choice to participate in clinical trials; the treatment
characteristics of clinical trials evolve over time with technological progress. Given the myr-
iad of commercial treatments available each period, we use a clustering algorithm to group
treatments with similar characteristics into clusters whose composition changes over time, as
new drugs enter the market and others are withdrawn for lack of demand. Consumers opting
for a commercially available treatment randomly select from their cluster of choice, knowing
only the distributional characteristics of the cluster. They learn the treatment characteristics
of the specific treatment they select after one (six month) period of experience; therefore, in
the choice set, we distinguish between the first time a consumer takes a given treatment, and
repeat prescriptions for that particular treatment. Our clustering approach allows for aggre-
gate demand to speed and sway future innovation while addressing the challenge of a large
and changing choice set in a finely differentiated market, a challenge faced by consumers but
also by researchers in marketing and industrial organization. We use the model to focus on
technological progress in treating HIV/acquired immunodeficiency syndrome (AIDS), and, in
particular, the role of clinical trials.

The parameter estimates of the model are presented in Section 6. The model tracks the ef-
fects of technological progress on the various components of demand quite well; the model
interprets highly active antiretroviral therapy (HAART), the major advance in medical treat-
ment of HIV within the sample frame, as a relatively unlikely event. Our results reveal that a
strong distaste for experimentation slows the diffusion of new, superior treatments as well as
the development of future treatments in clinical trials.

We quantify the magnitude of the demand-pull externality for experimental treatments at
two different points in time, before and after HAART was developed. We compute for both
1991 and 1996, the one-period subsidy, and its lump-sum total cost, which attains the market
share of experimental treatments that maximizes expected utility averaged across the HIV+
population. We find that optimally subsidizing experimental treatment after HAART pro-
duces considerably greater social benefits than beforehand, and the improvement in value of
life from subsidizing experimental treatment in 1996 constitutes about two-thirds of the im-
provement in average value of life due to technological progress between 1991 and 1996. We
also find that the sickest benefit the most from correcting the externality.

This study contributes to a literature on dynamic demand under uncertainty. Following
Petrin (2002), treatments are modeled as bundles of characteristics, with dynamic impacts on
consumers, as in Gowrisankaran and Rysman (2012). Several other studies apply dynamic
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models of demand to health-related choices, and like ours have: learning (Crawford and
Shum, 2005; Chan and Hamilton, 2006; Fernandez, 2013; Darden, 2017; Dickstein, 2018); con-
sumer experimentation with new products (Chan and Hamilton, 2006; Fernandez, 2013); side
effects, including the effect on labor force participation (Papageorge, 2016); and the equilib-
rium implications of individual choices that affect the health of others (Chan et al., 2016). Pre-
vious work also investigates how demand affects innovation. For example, Finkelstein (2004)
shows that policies promoting vaccine use accelerate the development of vaccines; Acemoglu
and Linn (2004) and Dubois et al. (2015) relate market size to pharmaceutical innovation us-
ing the size of the U.S. market and a measure of the size of the global market, respectively.
Dranove et al. (2014) identify a social value of pharmaceutical innovation, showing that Medi-
care Part D spurred the development of some drugs. Waldfogel (2003) describes the mech-
anism through which market shares can influence products, thus benefitting individuals with
similar tastes. Bolton and Harris (1999) argue that a free-riding problem emerges if experi-
mentation accelerates innovation. Our contribution is to model the externality arising when
an evolving choice set is endogenous to consumer demand, provide structural estimates quan-
tifying its importance, and evaluate counterfactual policies designed to mitigate the effects
of the externality. Our structural approach allows for counterfactual measurement of the ef-
fect of consumer choice on future innovation. Within this structured context, the emphasis we
place on clinical trials as instruments driving innovation is also new to the literature.

Our empirical strategy builds on Hotz and Miller (1993), Hotz et al. (1994), and Altuğ and
Miller (1998) in using conditional choice probabilities (CCPs), and forward simulation tech-
niques to incorporate how individuals form expectations about future innovations. In our con-
text, the individual’s choice set evolves stochastically as a function of endogenous product exit
and entry. Exit occurs when demand falls below threshold bounds, whereas entry is deter-
mined by the innovation process that contains two components: unexpected, aggregate supply
shocks and a systematic component, endogenous to aggregate demand, captured by a multidi-
mensional reference point for innovation.

Not modeling the primitives that drive firm decisions severely limits the scope for analyz-
ing counterfactuals. Although we model an equilibrium supply curve that includes the rele-
vant state variables determining the supply response in equilibrium, we cannot predict how
firms would react to different policies when given the opportunity. As mentioned above we
do, however, predict the size of the externality and how the market would react to an unan-
ticipated temporary shock to policy.

Two recent papers estimating structural models of firm rivalry analyze how market struc-
ture affects technological advance. Goettler and Gordon (2011) estimate a model of duopoly
in the market for microprocessors assuming unidimensional product quality, that innovations
are a fixed positive amount, and allowing for up to two innovations to be introduced each pe-
riod. Igami (2017) studies the market for hard disk drives, often considered a durable good,
but modeled here as a single, nondifferentiated, unidimensional product for which demand,
perfectly forecast by firms, does not depend on past purchase behavior; products are upgraded
at most once per period; each period firms move in a predetermined invariant order observing
all the past moves, as part of a perfect information game with a fixed finite horizon fully antici-
pated by all the players.

The complexity of the HIV treatment industry and the nature of our data are critical fac-
tors determining our modeling approach. Table 1 presents evidence of this complexity: at least
11 firms produced HIV drugs over the period, some of the firms resulting from mergers.1

Most treatments are combinations using product components developed by up to four phar-
maceutical firms.2 Product quality is multidimensional; the size of innovations varies between

1 For example, the first product component (AZT) was introduced by Burroughs–Wellcome in 1987, which became
Glaxo–Wellcome in 1995, GlaxoSmithKline in 2000, and transferred its HIV assets to the joint venture ViiV created
with Pfizer in 2009. By 1995, at least six firms had introduced product components and had valid patents (Glaxo–
Wellcome, Bristol–Myers Squibb, Hoffmann-La Roche, Abbott, Merck, and Boehringer Ingelheim).

2 The long name and chemical composition of product components are displayed in Table A.2 in Appendix A.1.
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firms in any given period and over time within a firm; there is aggregate uncertainty about the
direction of the quality vector. Finally, our data contain detailed information about individ-
ual demographics, treatment choices, and their effects, but much less information about how
firms make their research, development, and marketing decisions. A challenge for future re-
searchers seeking to investigate counterfactuals more extensively is to estimate a structural
model that combines a rich dynamic demand structure derived from consumer preferences
estimated off panel data with an equilibrating supply side mechanism based on the evolving
technologies that define the firm primitives.3

2. data

Our empirical application focuses on the market for HIV treatments that came into exis-
tence around 1984 with the beginning of the HIV pandemic, which had caused over 613,000
deaths in the United States by 2009.4 HIV infection leads to a reduction in the ability of the
immune system to fight off routine infections, a condition known as AIDS. In developed coun-
tries, where access to medication is widespread and often subsidized, technological advance-
ment has transformed HIV infection into a manageable condition with treatments whose side
effects are fairly mild. This was not always the case. In the early years of the epidemic, avail-
able treatments were not only largely ineffective, but also had uncomfortable, painful and
even deadly side effects. Over time many innovations appeared, most of them small, but in the
mid-1990s, a new set of treatments collectively known as HAART was introduced, transform-
ing HIV from a virtual death sentence into a chronic condition.5 Within two years, mortal-
ity rates fell by over 80% among HIV-infected (HIV+) men (Bhaskaran et al., 2008). While
the first versions of HAART included drugs that were highly toxic, driving some people to re-
frain from using them to avoid often intolerable side effects, innovations after the mid-1990s
reduced the adverse side effects.

We extract data from the Multi-center AIDS Cohort Study (MACS), an ongoing longitudi-
nal survey of HIV infection in men who have sex with men (MSM) that began in 1984. It is
conducted at four large U.S. sites: Baltimore, Chicago, Pittsburgh, and Los Angeles. We can-
not formally establish that the sample is geographically representative of the market of MSM
in the United States. However, the urban nature of the sample captures the fact that gay men,
a group largely overlapping with the set of MSM, were mostly located in selected urban areas
(Black et al., 2000, 2002). Within urban areas where gay men concentrate, Los Angeles and
Chicago ranked high in both the concentration of gay couples and the seroprevalence of HIV,
whereas Baltimore and Pittsburgh tended to rank low (Holmberg, 1996; Black et al., 2002).
Although the MACS data are drawn from the United States, previous work suggests that the
United States is often the primary target market for pharmaceutical innovation, in particular
for HIV drugs (Goldman, 2018), because of its size (OECD, 2017; Sarnak et al., 2017), and
lack of price restrictions (Danzon et al., 2005; Kyle, 2007). Concordantly, at least 80% of the
product components in Table 1 were first launched in the United States.6

At each semiannual visit, survey data are collected on HIV+ men’s health status, their
treatment decisions (including their participation in clinical trials), out-of-pocket expenditures
for prescription medication (antiretrovirals or otherwise), and physical ailments (which can

3 Chen et al. (2013) calibrate, for the U.S. automobile market, a model of new and used goods in a steady-
state Markov perfect equilibrium where consumers are forward-looking and firms with the same unit costs produce
durable goods that depreciate over time.

4 For comparison, over the same period in the United States, there were 508,000 homicides and U.S. deaths in
World War II were just under 420,000. Globally, the number of deaths due to HIV/AIDS stands at roughly 35 million.
Currently, roughly 50,000 new infections and 13,000 deaths per year in the United States are attributed to HIV/AIDS.

5 Two crucial clinical guidelines that comprise HAART became commonly accepted in 1996. First, the usage of pro-
tease inhibitors (made widely available toward the end of 1995) as an effective HIV treatment. Second, the usage of
several antiretroviral (ARV) drugs simultaneously to delay the onset of AIDS indefinitely.

6 Based on evidence from PharmaProjects (a longitudinal drug development database) and Internet web searches
we conducted, 16 out of 20 of the product components in Table 1 were first launched in the United States.
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reflect drug side effects), along with sociodemographic information such as labor supply, in-
come, race, and education. The survey instrument is updated every six months, so any new
treatment is immediately included. Hence, we use the treatment choice data to construct the
life cycle of each treatment, including its sample market share. The main treatments and
their life cycles are shown in Table 1. Most are combinations comprising a collection of prod-
uct components that very often are produced by different pharmaceutical firms. Table 1 also
shows that our data capture the onset of the market with its first drug, AZT in 1987, as well
as the development of combinations still in use, such as Atripla (EFV/TDF/FTC) and Truvada
(TDF/FTC).

Our measure of health, the cluster of differentiation 4 (CD4) count, is based on the immune
system; it is defined as the number of white blood cells per cubic millimeter of blood, obtained
from blood tests that are administered at each visit. Absent HIV infection, a normal count
ranges between 500 and 1,500. For HIV+ individuals, a count below 500 indicates that the im-
mune system has begun to deteriorate. However, such individuals may remain asymptomatic.
When the CD4 count drops below a threshold of between 200 and 250, a patient is said to
suffer from AIDS: his immune system fails to fight off routine infections, compromising his
survival probability. Few data sets contain such objective, continuous measures of health and
detailed treatment data, along with economic information. This commends the MACS data
set to analyzing demand-pull innovation in the medical treatment market. A drawback of
the MACS data is that it lacks information on treatment prices; our empirical work approxi-
mates the cost of treatment using out-of-pocket expenditures after controlling for health and
other observables.

The MACS data set, replenished over time due to attrition, contains information on 6,972
subjects at 49 semiannual visits for a total of 111,271 observations between 1984 and 2005,
in the form of subject visits. We limit our attention to the observations on HIV+ individuals
without missing information in relevant variables. Lacking data on gross income and out-of-
pocket expenditures at earlier visits, we use two samples. The larger one (20,142 observations)
covers visits 6 (87-1, year 1987 semester 1) to 49 (08-2), and only includes health status, ail-
ments, and product usage; the smaller sample (16,851 observations) starting at visit 14 (91-1)
contains all the variables. The smaller sample comprises 1,719 males, 68% white, 22% black,
and the rest Hispanic; 86% received some secondary education or more, and 23% attended
graduate school. Underscoring the gravity of HIV infection, about 40% of the subjects in our
sample die prior to the end of the sample period. Appendix A.1 describes how both samples
are constructed. In the remainder of this section, we describe the panel data further and docu-
ment key patterns that motivate the main features of our framework.

2.1. HAART Has a Dramatic Impact. Figure 1(a) shows that when HAART is introduced
death rates plunge, and continue to fall until 2007, as smaller innovations occurred that made
drugs incrementally more effective and less toxic. Table 2 shows that improvements in sur-
vival coincide with improvements in immune system health as measured by the CD4 count.
Similarly, the proportion of the population experiencing aliments declines 4 percentage points.
The sample average age rises from 41 to 47 years old due to aging and lower mortality rates.
Accompanying the changing composition of this aging sample, gross income falls from about
19,000 in the pre-HAART era to 16,500 after 1995 in real $U.S. indexed to 2000. There is sub-
stantial variation in labor supply both within and between individuals; 74% (68%) of them
work (do not work) in at least one period and labor force participation falls by 12 percentage
points in the post-HAART era.

2.2. Individuals Respond to Technological Change. The sample response to the introduc-
tion of HAART is equally noteworthy. On the one hand, Table 2 shows that the share of
observations (subject-visits) of individuals consuming a commercially available treatment in-
creases 50% from the pre-HAART era to post-HAART. On the other hand, the share of
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(a) Survival (b) Commercial Treatment (c) Experimental Treatment

Notes: Left panel shows the probability of dying between periods t and t + 1 conditional on surviving until t. More
than 1,500 surveyed individuals died for AIDS-related causes during our analysis period. The middle and right panels
show consumption by health status.

Figure 1

survival and consumer demand over time

Table 2
summary statistics: subject visits, 1990–2007

Sample Pre-HAART Post-HAART
(t < 96-2) (t ≥ 96-2)

Ailments 0.43 0.45 0.41
Commercial treatment 0.65 0.49 0.76
Experimental treatment 0.07 0.09 0.05
Labor participation 0.63 0.70 0.58
Age 44.48 40.89 47.01

(8.03) (6.99) (7.75)
CD4 475 407 524

(297) (298) (287)
Gross income 17567 19036 16531

(8787) (8733) (8677)
Out-of-pocket expenditures 266 179 327

(706) (598) (767)
Observations 16851 6972 9879

Notes: Standard deviation in parentheses. Gross income and out-of-pocket expenditures are semestral and measured
in real $U.S. indexed to 2000. Post-HAART starts in the second semester of 1996 (t ≥ 96-2). All differences between
pre- and post-HAART eras are statistically significant at the 0.01 level. Table A.1 in Appendix A.1 presents descrip-
tives by treatment chosen.

observations of individuals consuming experimental treatments almost halves. Mean out-of-
pocket medical expenditures almost doubles, despite the lower incomes on average.

Treatment varies across individuals, and also over time for the same individual; 83% of
unique individuals are observed using a commercial treatment at least once and 24% partici-
pate in at least one clinical trial. Some of this variation is tied to the individual health and the
quality of different treatments. For example, Figure 1(b) shows consumption of commercially
available treatments differed across health levels prior to the introduction of HAART. Indi-
viduals with low CD4 counts were more likely to use commercially available, relatively inef-
fective treatments, whereas healthier individuals often avoided treatment altogether. Demand
for treatment increased and converged across health levels in response to the introduction of
more effective products after HAART.
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(a) By Treatment Usage (b) By Treatment Usage and CD4

Notes: This figure displays the mean of the ailments indicator over time. Commercial refers to individuals consuming
a commercial treatment. High (low) health refers to individuals with CD4 counts greater than or equal to (less than)
250. Right panel uses local polynomials to smooth the series.

Figure 2

physical ailments by treatment usage and cd4

A striking feature of Figure 1(c) is the spike in trial treatment around the time HAART
was introduced. Early trial participation is driven largely by individuals with low CD4 counts,
but once effective treatments become available, their participation almost evaporates. Numer-
ous studies document the difficulties recruiting HIV drug trial participants (see, e.g., Mills
et al., 2006), especially once commercially available treatments improved after HAART was
introduced (Brown et al., 2006; Malani and Philipson, 2011), generating widespread concern
that selective participation or attrition could bias study results or slow innovation. Malani
and Philipson (2011) provide evidence that the precipitous drop in trial participation among
HIV+ men is indeed due to shifts in the demand for trial slots. Increased NIH HIV research
funding over these years, a proxy for available trial slots, which we document in Figure A.1 in
Appendix A.1.2, corroborates this view. We conclude the drop in trial participation is likely to
be due to a decline in the demand for, instead of the supply of, trial slots.

2.3. Product Characteristics Are Multidimensional. Figure 1(b) shows that immediately
following the introduction of HAART, the proportion of HIV+ individuals taking commer-
cially available treatments rises but it climbs only to roughly 80%, even among those who
are most severely affected by HIV. Given its life-sustaining benefits, this seems odd: the treat-
ments are costly, but out-of-pocket costs for medical care do not vary much across treatment
alternatives. Figure 2(a) provides support for another explanation, that individuals avoid ef-
fective medications because of their side effects. It shows that those who consume a com-
mercial treatment suffer more physical ailments (such as nausea or cramping). Figure 2(b)
shows that this relationship holds even after controlling for the underlying immune system
health. The consumption patterns are consistent with the notion that treatments are multiat-
tribute products: drug efficacy that improves underlying health, and the propensity for a drug
to cause side effects compromising quality of life.
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(a) Time Series (b) Empirical Distribution

Notes: Dates are in format year-semester. Panel 3(a) displays the number of new treatments over time. Panel 3(b)
displays the empirical distribution of the number of new treatments obtained from the time series.

Figure 3

number of new treatments
[color figure can be viewed at wileyonlinelibrary.com]

2.4. The Number of New Treatments Fluctuates over Time. We define a treatment as a
combination of product components. (See Table 1 and Appendix A.1.) For instance, AZT
and the combination AZT/3TC/ABC are distinct treatments. This definition corresponds to
the nature of the market, where large treatment innovations such as HAART are themselves
combinations of product components. Because there are complementarities between product
components, the physiological response from treatment AZT/DDI is not equal to the sum of
the physiological responses of AZT and DDI when taken separately. By this definition, 86
treatments are introduced to the market over the sample period with substantial variation
in the number of new treatments introduced each period shown in Figure 3(a). Figure 3(b)
shows that the unconditional probability of observing more than one treatment entering in a
given period is more than 30% .

2.5. Market Concentration Fluctuates with Innovation. Substantial variation in the num-
ber of new treatments (Figure 3) along with consumer preferences for multiple dimensions of
drug quality is reflected in both innovation and market concentration. Figure 4 shows innova-
tion and diffusion of new products over time using a heat map: dark colors correspond to low
(or 0) market shares, whereas warmer colors indicate higher market shares. In the mid-1980s a
few treatments command high shares. As time passes new treatments strip market share from
incumbents and less popular treatments exit. Low market shares are common after HAART
is introduced around 1995: many new treatments are introduced, and most of them are effec-
tive but have strong side effects. As the market matures, effective treatments with fewer side
effects become commercially available, mitigating the trade-off between the two treatment
qualities, and increasing market concentration once again.

2.6. Innovation Is Guided by Demand. We also find evidence that innovation responds
to consumer demand. Figure 5 illustrates the process of innovation with snapshots of the
evolving market captured from our animated appendix.7 Each snapshot plots treatment

7 https://www.dropbox.com/s/2icr4dxrpx9metk/treatmentevolutionNew.mp4?dl=0.

https://www.dropbox.com/s/2icr4dxrpx9metk/treatmentevolutionNew.mp4?dl=0
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Notes: HIV treatments from 1984 to 2008. Each ID—or row—represents a treatment. Color indicates the share of
the market that the treatment captures. Shares are conditional on individuals who consumed a treatment.

Figure 4

diffusion of treatments over time
[color figure can be viewed at wileyonlinelibrary.com]

characteristics, effectiveness, and lack of side effects, on the two axes, indicating new, preex-
isting, and withdrawn treatments at three different times.8 Also plotted is the lagged centroid,
a summary measure of current market demand defined by the average of commercially avail-
able treatment characteristics weighted by their market share.9 Depending on what treatment
mix the treated population collectively choose, the centroid could be any point in the con-
vex hull formed from commercially available treatment characteristics. As the figure suggests,
and as our estimates in Section 5 establish more rigorously, the characteristics of new treat-
ments are distributed around the centroid offset by slight upward trend (improving treatment
characteristics on both dimensions). This is evidence that future technologies are based on the
treatments that are currently in most demand.

Our animated appendix (and its snapshots in Figure 5) shows that in our sample, both the
centroid and innovations advance along the efficacy dimension first, and then on the side ef-
fects dimension agglomerating initially in the bottom left quadrant, then the top left, and

8 We measure efficacy as the marginal contribution of a treatment to CD4 count and lack of side effects as the
marginal contribution of a treatment to the log odds ratio of not causing ailments versus causing ailments. See Ap-
pendix A.8 for more details.

9 The centroid is formally defined in Section 4 where our empirical model is laid out.
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(a) Treatments: 90-1 (b) Treatments: 96-1 (c) Treatments: 01-1

Notes: The figure shows snapshots of the evolution of the state of the product market at different dates in year-
semester (YY-S) format. Products are two-dimensional. On the x-axis is a measure of a treatment’s ability to not
cause side effects, θ (ail). On the y-axis is a measure of its contribution to underlying health, θ (health). Dimensions are
measured in different scales. Incumbent products are shown in black. New products are shown in red. Withdrawn
products are shown as x. The green square is a measure of the prevalent technology in the previous period.

Figure 5

treatment evolution
[color figure can be viewed at wileyonlinelibrary.com]

finally expanding into the top right. For example, comparing the second and third panels of
the figure, notice that highly effective treatments exit the market, whereas some treatments
that are less effective, but with fewer side effects, remain. A possible explanation for these
trends is based on dynamic demand considerations that arise when future utility is geometri-
cally discounted: as new treatments reduce mortality, life expectancy increases, the marginal
value of living even longer declines, and consequently, the relative value of taking treatments
with fewer ailments rises too.

2.7. Individuals Do Not Instantaneously Adopt Treatments with Superior Characteristics.
Another feature of this market illustrated in Figure 5 is that consumers do not seem fully
informed and seem to learn gradually. Many drugs well inside the frontier on both dimen-
sions of treatment quality were consumed throughout the entire era. Nevertheless, consumers
tended to drop treatments of inferior quality over time. The latter fact also provides evidence
that other unobserved characteristics of the products were less important.

3. a model of demand-pull innovation

This section develops a generic model of demand-pull innovation to explain how consumers
can drive technological innovation. We describe the setup, define a rational expectations equi-
librium (REE) for the model, and then analyze the nature of demand-pull externalities.

3.1. Setup. Consider a perishable differential product market that evolves over discrete
time t ∈ {0, 1, . . .} with consumer tastes and technological change. We assume the characteris-
tics θk ∈ � of each product k ∈ {1, 2, . . .} are fixed over time and products are labeled in the
order they are introduced. Let Kt be the set of products available at t, which includes the op-
tion of not buying any product (k = 0), a set that fluctuates over time because of both entry
and exit.10 We denote by skt the market share of k at t, the proportion of consumers buying

10 The ordering of multiple products introduced in the same period is immaterial. Moreover, since some products
enjoy a longer shelf life than others, the current set of available products does not correspond to the most recently
introduced ones.
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k in the total population, and define st ≡ {skt}k∈Kt . We assume current technology θt ≡ {θk}k∈Kt

and the market shares of each product stochastically determine the course of innovation: θt+1

is a random variable generated by θt and st , with transition probability G(θt+1|θt, st ). This ap-
proach incorporates state variables that firms supplying the market would base their decisions
on, finessing issues researchers must directly confront when explicitly modeling firms behav-
ior, but for that reason cannot predict how firms react to counterfactual changes that affect
firm behavior.

Each consumer makes a product choice every period, setting the choice indicator dkt = 1 if
he chooses k at t, and 0 otherwise, implying

∑
k∈Kt

dkt = 1 for all t. Consumers are represented
by their period t individual characteristics: a state variable denoted by zt ∈ RZ with transition
probability Fk(zt+1|zt ), and a disturbance vector denoted by εt , independent and identically
distributed over t with cumulative density function Fε(εt ) formed from elements εkt for k ∈ Kt .
We assume the population mass is constant, and denote the endogenously determined prob-
ability distribution of individual state variables within the population at t by Ht (z). The con-
sumer derives current utility uk(zt ) + εkt from choosing k ∈ Kt at t, subjectively discounts fu-
ture periods at the geometric rate of β ∈ (0, 1), and hence attains a lifetime utility of:

∑∞
t=0

∑
k∈Kt

βtdkt[uk(zt ) + εkt].(1)

3.2. Rational Expectations Equilibrium. At time τ ∈ {0, 1, . . .} the consumer faces three
sources of uncertainty about future periods t > τ , namely the aggregate technology θt , his
choice-specific disturbances εt , and his individual state variables zt . We assume he maximizes
the expected value of (1) choosing dt at each t, a vector of indicator variables with elements
dkt for all k ∈ Kt , given his current information (zt, θt, εt ). Denote by Vt (zt, θt ) the ex ante
value function at the beginning of period t just before εt is revealed. Appealing to Bellman’s
principle:

Vt (zt, θt ) =
∫ {

max
dt

∑
k∈Kt

dkt[vkt (zt, θt ) + εkt]
}

dFε(εt ),(2)

where vkt (zt, θt ) and the conditional valuation function for choosing k at t given (zt, θt ), is re-
cursively defined as:

vkt (zt, θt ) ≡ uk(zt ) + β

∫
Vt+1(z′, θ ′)dG(θ ′|θt, st )dFk(z′|zt )(3)

and st denotes the REE market shares formed from the elements skt for each k ∈ Kt . The opti-
mal choice rule dkt (zt, εt , θt ) solves:

dkt (zt, εt , θt ) ≡
∏

j∈Kt
1
{
ε jt − εkt ≤ vkt (zt, θt ) − v jt (zt, θt )

}
(4)

for each k, and the REE is defined by market clearing conditions that equate ex post market
shares st , with product demand se

t induced by the optimal choices. Formally, it is a fixed-point
solving:

se
kt =

∫ ∫
dkt (z, εt , θt )dFε(εt )dHt (z)(5)
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for all (k, t, z, θ ) ∈ Kt × {0, 1, . . .} × RZ ×�, where the distribution of consumer characteris-
tics Ht (z) follows the law of motion:

Ht+1(zt+1) =
∑
k∈Kt

∫
zt∈RZ

∫
z≤zt+1

∫
dkt (zt, εt, θt )dFε(εt )dFk(z|zt )dHt (zt )(6)

In particular given the ex ante value function Vt+1(zt+1, θt+1), we can construct Kt equations
in Kt unknowns, where Kt is the number of products at t and se

t ∈ �Kt , by successively substi-
tuting the right side of (3) for vkt (z, θt ), which explicitly depends on st through G(θ |θt, st ), into
(4), and the resulting expression for (4) into (5). Recursively solving the entire system yields
an REE.11

3.3. Externality. In an REE, consumers impose an externality on each other by not ac-
counting for their individual effects on the rate and direction of innovation. To characterize
this inefficiency and provide a theoretical basis for quantifying its effects, we decompose the
individual optimization problem into two steps: The first step partitions the support of εt , for
any pt ∈ �Kt , into regions defined by a cutoff rule. The inversion theorem of Hotz and Miller
(1993) implies that the optimal decision rule satisfies this cutoff rule. The second step substi-
tutes the set of rules satisfying this necessary condition back into the original problem: choos-
ing shares pt for each product k ∈ Kt in the submarket defined by zt then yields

pkt (zt, θt ) ≡
∫

dkt (zt , εt, θt )dFε(εt )(7)

alternatively interpreted as the CCP for choosing k at t given (zt, θt ).
In the first step, denote by Dt the space of functions that map εt into Kt , and define for any

vector wt ∈ RKt the mapping ψt (wt ) : RKt → �Kt as:

ψt (wt ) ≡
∫ [

arg max
dt∈Dt

∑
k∈Kt

dkt (wkt + εkt − ε0t )

]
dFε(εt )(8)

and normalize w0t to 0. By Proposition 1 of Hotz and Miller (1993), ψt (wt ) is invertible, so for
all CCPs pt ∈ �Kt and εt ∈ RKt+1, we can also express the optimal decision for this static prob-
lem as a mapping of (pt, εt ) and the conditional expectation of the selected associated distur-
bance as a mapping of pt :

ϒkt (pt, εt ) ≡
∏

j∈Kt
1
{
ε jt − εkt ≤ ψ−1

kt (pt ) − ψ−1
jt (pt )

}
,(9)

�kt (pt ) ≡ p−1
kt

∫
(εkt − ε0t )ϒkt (pt, ε)dFε(εt ).(10)

In our model, ϒkt[pt (zt, θt ), εt ] = dkt (zt, εt, θt ). Intuitively, (9) partitions the disturbance space
into K subspaces optimally defining the cutoff values as a function of the CCPs.12 Each ele-
ment of the partition corresponds to the support for a selected disturbance term as a function
of the CCPs, used when calculating the expectation displayed by (10).

11 The existence of an REE can be established by imposing regularity conditions on the primitives, such as placing
bounds on uk(zt ).

12 For example, if k is the optimal choice given ε, then k is optimal for all ε∗ satisfying ε∗ = ε + (δ0, . . . , δK )′ with
δk ≥ 0 and δk′ ≤ 0 for k′ 
= k .
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The second step exploits (9) and (10) to transform the original problem of choosing d into
one of choosing pt . For any (fixed) wt ∈ RKt :

∫ [
max
dt∈Dt

∑
k∈Kt

dkt (wkt + εkt − ε0t )
]

dFε(εt )(11)

=
∫ [

max
pt∈�Kt

∑
k∈Kt

ϒkt (pt , εt )(wkt + εkt − ε0t )
]

dFε(εt )

= max
pt∈�Kt

∑
k∈Kt

∫
[wktϒkt (pt, εt ) + (εkt − ε0t )ϒkt (pt, εt )]dFε(εt )

= max
pt∈�Kt

∑
k∈Kt

pkt[wkt +�kt (pt )].(12)

The first equality is justified by (9); it implies that although the arg-max d resulting from the
first line depends on εt , the arg-max pt resulting from the second line does not because pt is
not a function of εt . Hence, the maximum and integral operators can be exchanged on the
third line; the last line (12) then follows from (9).13

Setting vkt (zt, θt ) − v0t (zt, θt ) for wkt in (12) and differentiating for each k ∈ Kt , the CCPs
for the REE are a root to:

vkt (zt, θt ) − v0t (zt, θt ) +�kt (pt ) +
∑

k′∈Kt
pk′t∂�k′ (pt ) /∂pkt(13)

in pt for each (zt, θt ). The objective in a social planning problem (SPP) is to maximize the ex-
pected value of (1) integrated over the distribution of population characteristics Ht (z). The
first step of the REE and SPP problems is identical. Appealing to (3), the CCPs for the SPP
are chosen to maximize:∫ ∑

k∈Kt

pkt

{
uk(zt ) − u0(zt ) +�kt (pt )
+β ∫ Vt+1(z′, θ ′)[dFk(z′|zt ) − dF0(z′|zt )]dG(θ ′|θt, st )

}
dHt (z)(14)

with respect to pt for each (zt, θt ) in the second step. Again, with reference to (3), the neces-
sary first-order condition equates (13) with:

−β
∑

k′∈Kt

pk′t

∫
Vt+1(z′, θ ′)[dFk′ (z′|zt ) − dF0(z′|zt )]

∂g(θ ′|θt, st )
∂skt

dθ ′(15)

instead of 0, where g(θ ′|θt, st ) ≡ ∂G(θ ′|θt, st )/∂θ ′ is the density function of θ ′. From (15),
the SPP product allocated to each consumer accounts for the effect of innovation on every
other consumer. For example, if the consumption share of a particular product boosts inno-
vation and next period’s SPP ex ante value function increases with that share, the planner is
prompted to allocate that product to those with a lower value of their product-specific distur-
bance than otherwise, thus increasing its overall share above the REE share.

4. parameterizing the model

Our application to medical treatment focuses on two key characteristics of HIV treatments,
their effects on the CD4 count, and the probability a consumer does not experience side ef-
fects, or the lack of ailments. Thus, � ≡ R2 in our application. We add several features to the

13 See also Aguirregabiria and Magesan (2018) for an alternative proof.
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generic framework. Since HIV+ individuals have the option of joining a clinical trial and re-
ceiving an experimental treatment, our empirical framework includes this alternative. In con-
trast to the commercial treatments whose characteristics are fixed upon entry, the character-
istics of the experimental treatment evolve over time with technological change and market
preferences for health and ailments. For tractability reasons, we constrain the choice of com-
mercial treatments: instead of allowing consumers to select any commercial treatment, they
can repeat exactly the same treatment as last period, or choose between several clusters that
partition treatments according to their characteristics; upon choosing a cluster, consumers are
randomly assigned a treatment from within the cluster. We model variation in labor supply
participation and its effects on future participation, mainly because of the documented rela-
tionship between health and work. Given the high mortality rates in this population, we also
model survival, taking account of demographic heterogeneity throughout the population. We
now explain these features in more detail.

4.1. Innovations in Treatments. The characteristics of new commercial treatments, and also
experimental treatments, are modeled as random draws from a distribution around a centroid,
a weighted average of the characteristics of treatments commercially available in the previous
period, where the weights are market shares. We define ωt ≡ (ω(health)

t , ω
(ail)
t )′, the centroid for

period t, as:

ωt ≡
∑

k∈Kt−1
sk,t−1θk∑

k∈Kt−1/{0} sk,t−1
.(16)

where θk ≡ (θ (health)
k , θ

(ail)
k ). Also let set denote the share of consumers opting for an experi-

mental treatment through a clinical trial. We assume that the characteristics of new and exper-
imental treatments are random variables, respectively, determined by:

θk − ωt−1 = φ0ν + φ1ν · se,t−1 + νk if k ∈ Kt and k /∈ Kt−1,(17)

θet − ωt = φ0ν + φ1ν · se,t−1 + νet,

where νk and νet are independent and identically distributed with density function fv(v) and
mean 0.14 Equation (17) shows that new commercially available treatments in period t are
innovations around the previous-period centroid ωt−1, whereas the experimental treatment
available through clinical trial participation at t is an innovation around the current-period
centroid ωt . Thus, (17) captures recency in experimental treatment innovations relative to new
treatments launched commercially. Also since the primary purpose of clinical trials is to pro-
duce innovations, we allow the characteristics of new and experimental treatments to be sys-
tematically affected by the amount of experimentation undertaken in the previous period.

4.2. Entry and Exit. Both entry and exit are driven by market demand in our application.
We assume that the number of new treatments in period t, Nt , is a negative binomial random
variable, whose mean depends on the market share of experimental treatments, se,t−1, and the
magnitude of innovations in the previous period, denoted by κt−1:

E[Nt |κt−1, set−1 ] = exp(φN
1 κt−1 + φN

2 set−1).(18)

14 Consistent with this setup, we test and cannot reject the hypothesis that the coefficient on the centroid in Equa-
tion (17) is equal to 1, that is, that new product characteristics are drawn from a distribution centered on the centroid.
We also find that conditioning on the centroid captures the relationship between experimental treatments at t and
the characteristics of new treatments entering the market at t + 1. In Appendix A.2.1, we test whether the innovation
shocks, ν, are serially correlated and we cannot reject the null hypothesis that they are independent.
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We quantify the magnitude of current innovations by κt ≡ δ1κ
(health)
t + δ2κ

(ail)
t where (δ1, δ2) is

a vector of scaling weights to achieve comparability across the different treatment characteris-
tics, κ (health)

t is defined analogously to κ (ail)
t , and:

κ
(ail)
t ≡ max

{k: k∈Kt and k/∈Kt−1}

{
θ

(ail)
k − ω

(ail)
t−1

}
.(19)

The distribution for Nt captures two empirical patterns. First, if a smaller proportion of the
market consumes experimental treatments, fewer new treatments are likely to appear, and
for the same reason, we expect less innovation in treatment characteristics. Second, a rela-
tively large number of new treatments tend to follow large breakthroughs, because they spur
rival suppliers.

The exit rule is defined by the dyad {s, s}. We can split the market share of treatment k into
new skt and repeat skt consumers, where skt + skt = skt . If skt dips below the critical number s,
the treatment is no longer available for new consumers; when skt dips below s, the treatment is
withdrawn altogether.

4.3. Choice Set. Consumers’ knowledge of the market is limited. At each t, they know the
product spectrum and market shares (θt, st ). Supposing that i took a commercial treatment in
the previous period and that the treatment has not been withdrawn, he can order a repeat
prescription. In this case, he knows its characteristics. Let rt ∈ {0, 1} denote a period t indica-
tor variable for whether the consumer took a commercial treatment in period t − 1 that is still
on the market (rt = 1) or not; for rt = 1, denote by θrt the treatment characteristics of last pe-
riod’s commercial treatment. The experimental treatment is also in a consumer’s choice set; at
period t, he knows the innovation process, that is, fv(v), along with its previous-period mar-
ket share se,t−1, and can therefore infer the probability distribution generating θet but does not
know the realization of θet . He also retains the option of being untreated.

A consumer cannot, however, directly select any (other) treatment from Kt , but only
choose one of J clusters that partition Kt ; he is randomly assigned to a treatment within the
selected cluster. Let K jt comprise the treatments belonging to the jth cluster at time t, and de-
note by qk jt (k|K jt ) the probability that treatment k ∈ K jt is assigned when cluster j is chosen
at t.15 We denote by θ jt the vector of treatment characteristics from choosing j at t; it is drawn
from a probability density induced onto the jth cluster at t, defined by:

f jt
(
θ
∣∣K jt

) =
∑

k∈K jt

qk jt
(
k
∣∣K jt

)
I{θk = θ}.(20)

Each period t commercial treatments with similar characteristics are regrouped into J clusters
using an algorithm denoted by c(Kt ).16 We assume that the consumer knows f jt (θ |K jt ), the
distribution of treatment characteristics within each cluster.

Using a clustering algorithm shrinks huge choice sets driven by a plethora of similar prod-
ucts competing in a finely differentiated market, a challenge for consumers, and also empiri-
cal researchers in the fields of marketing and industrial organization. Basing the algorithm on
the characteristics of treatments captures, albeit in a reduced form way, the role intermedi-
aries such as doctors and pharmacies play in writing prescriptions; their expertise helps con-
sumers identify and choose a cluster of treatments with their preferred probability distribu-
tion of characteristics. In our model, treatments are an experience product: consumers learn
their treatment characteristics after one period. This implies that they sometimes purchase
new inferior treatments, an empirical feature of our data. Clustering also induces differential

15 We set J = 3 but test the algorithm with two, three, and four clusters. Results are shown in Section 5.
16 The clustering rule c in this model is known as the k-means algorithm; it is used in machine learning. A flexible

polynomial based on the characteristics of treatments in the cluster specifies qk jt . See Appendix A.2.1 for details.
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or staggered learning over the product life cycle (even) in an REE, because consumers cannot
immediately identify exactly which treatments are the most successful from aggregate market
data alone.17

To incorporate clusters, the experimental treatment, and repeat prescriptions into the
choice set, we adopt the following notation: Let djt ∈ {0, 1} for all j ∈ {0, 1, . . . , J, J + 1, J +
1 + rt}, where setting djt = 1 means that at t, the consumer chooses: not to purchase a treat-
ment when j = 0; a commercial treatment from cluster j that differs from last period’s treat-
ment when j ∈ {1, . . . , J}; the experimental treatment when j = J + 1; the same commercial
treatment as in the prior period when rt = 1 and j = J + 2. The repetition indicator rt can be
expressed recursively as:

rt =
∑J

j=1
1
{
θ j,t−1 ∈ Kt

}
djt−1 + 1

{
θr,t−1 ∈ Kt

}
dJ+2,t−1rt−1.(21)

4.4. Health, Survival, and Ailments. Treatment in period t directly affects consumers
through two channels, through the health of the consumer, denoted by ht ∈ R+, and measured
by his CD4 count, and physical ailments y1t ∈ {0, 1}, where y1t = 1 means there are no side ef-
fects from the treatment. We model the health production function as:

ht+1 =
∑5

s=0
γ

(health)
s hs

t +
∑J+1+rt

j=0
djtθ

(health)
jt + εht .(22)

The first expression in (22), a higher order polynomial in lagged health, captures its persis-
tence over time. The second is the boost to the CD4 count from treatment in the previous pe-
riod, whereas εht is independent and identically distributed (i.i.d.) with mean 0. We do not al-
low for differential treatment characteristics by race or ethnicity but we test this constraint in
Appendix A.2.1.18 We find that efficacy does not vary across race or ethnicity, whereas there is
limited evidence that side effects do.

The probability of the event y1t = 0, suffering a physical ailment in period t, depends on
current health, ht , and the second characteristic of current treatment, captured by the summa-
tion of djtθ

(ail)
jt over j. We assume that the probability of having physical ailments in t is:

Pr
[

y1t = 0
∣∣∣∣ht,dt ,

{
θ

(ail)
jt

}J+1+rit

j=0

]
(23)

=
[

1 + exp
(∑5

s=0
γ

(ail)
s hs

t +
∑J+1+rit

j=0
djtθ

(ail)
jt

)]−1

.

Due to the high mortality rates afflicting the sample population, we also model survival. It
depends on a polynomial in health, lagged physical ailments, and a demographic vector that
includes age (in half year increments), race/ethnicity (black, Hispanic, white), and education
level (high school, some college, college, or more than college). Let bt = 1 denote survival
through to period t, with bt = 0 otherwise, and let at denote the consumer’s corresponding de-
mographics. We assume:

Pr
[
bt = 1|x(live)

t ,bt−1 = 1
]
,=
[
1 + exp

(
x(live)

t γ (live)
)]−1

(24)

17 In Miller (1988), for example, in equilibrium, all consumers can deduce product quality two periods after its in-
troduction, by observing the level of repeat buying. More generally, it is well known that rational expectations equi-
libria are fully revealing unless some other form of aggregate uncertainty or market imperfection is present (Radner,
1979; Grossman and Stiglitz, 1980).

18 We do not consider individual-specific treatment effects because the sample is too small to obtain reliable fixed
effect estimates for the more than 80 observed treatments.
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where x(live)
t = (1,ht , . . . ,h5

t , at , y1,t−1
)
.

4.5. Labor Supply, Income, and Medical Expenditures. Labor supply, denoted by y2t ∈
{0, 1}, a state variable the individual learns at the beginning of t before making his treatment
decision, follows a logit transition probability that depends on current health ht , demographics
at , and previous-period labor supply y2,t−1:

Pr
[
y2t = 1|x(labor)

t

]
,=
[
1 + exp

(
x(labor)

t γ (labor)
)]−1

(25)

where x(labor)
t = (1,ht , . . . ,h4

t , at , y2,t−1
)
.

Gross income, y3t , is governed by the process:

y3t = x(inc)
t γ (inc) + η + ε

(inc)
t(26)

where x(inc)
t = (1,ht , . . . ,h7

t , at , y1t , y2t
)
,

the term η captures person-specific productivity and ε(inc)
t is an i.i.d. income shock uncorre-

lated with x(inc)
t that the consumer observes before making his treatment choice.

Out-of-pocket expenditure on health care y4t is determined by:

(
y4t = max

{
x(spend)

t γ (spend) + σ (spend)ε
(spend)
t , 0

})
(27) (

where x(spend)
t = (1,ht , . . . ,h6

t , at , y1t , y2t ,dt
)
,
)

and ε(spend)
t is an i.i.d. standard normal random variable. Expenditures increase from purchas-

ing a treatment but may also increase due to underlying health and physical ailments. Since
we do not directly observe pharmaceutical prices, (27) differentiates between the costs of not
being treated, a commercial treatment and an experimental treatment, but does not account
for cost differences between alternative commercial treatments.19

4.6. Preferences. We model current utility in period t from choosing j as:

Ujt ≡ α(inc)(y3t − y4t ) + α(ail)y1td0t + ε jt(28)

+
J∑

j=1

djt

(
α

(health)
1 ht + α

(dem)
1 at

)
+

J+1+rit∑
j=J+1

djt

(
α

(health)
j ht + α

(dem)
j at

)
,

where the choice-specific disturbance ε jt is i.i.d. as type 1 extreme value (TIEV). Individu-
als are risk neutral. The coefficient α(inc) is the marginal utility of wealth, α(ail) is the taste
for absence of ailments when untreated (that is, when y1it = d0it = 1), whereas α(health)

j and

α
(dem)
j are choice-specific utilities associated with health and demographics. Besides affecting

lifetime utility indirectly (through its impact on future health, survival, and outcomes), cur-
rent health affects utility directly; in particular, α jh captures differences in the time and psy-
chic costs of accessing an experimental treatment by health (for example, if doctors are more
willing to suggest experimental treatments to the sickest), and it also captures how individuals

19 End-users customarily pay a standardized deductible that is a fraction of the brochure price of the drug paid by
the insurance company. Mean out-of-pocket expenditures in our sample are $273 every six months (indexed to 2000
$U.S.). In 1995, a semester of ARV drugs cost between $488 and $2,315, and a semester of HIV treatment (primary
ARVs, adverse events, laboratory monitoring, and prophylaxis) cost between $1,054 and $5,504 (Gable et al., 1996).



innovation and diffusion of medical treatment 971

may be more willing to try a new treatment from a cluster when in poor health. We restrict the
cluster coefficients on health and demographics to be the same, implying α(health)

j = α
(health)
1

and α
(dem)
j = α

(dem)
1 for all j ∈ {1, . . . , J}, but allow for individuals to derive different utility

from consuming an experimental treatment or from repeating consumption of a commercially
available treatment.

4.7. Connecting the Generic Model to the Parameterization. Summarizing, the law of mo-
tion for the supply of available treatments, G(θt+1|θt, st ) in the generic model of the previous
section, is determined by (16) and (17) in the parameterization that define the characteristics
of new commercial treatments as well as experimental treatments, by (18) and (19) determin-
ing the number of new commercial treatments, and by the dyad {s, s} defining the withdrawal
of treatments. The personal state variables for this application, zit , are: survival, bit ; health,
hit ; the characteristics of the treatment taken last period if a commercial treatment was con-
sumed, denoted by θrit ; demographic variables, ait ; an individual fixed effect, ηi; and labor sup-
ply participation y2it stochastically determined by (25). Taking the set of available treatments
and the distribution of consumer characteristics as given, the consumer with personal state
zit makes a treatment choice, setting djit = 1 for some j ∈ {0, 1, . . . , J, J + 1, J + 1 + rit}. Ap-
pendix A.7.2 presents the value function of the parameterization.

Then his ailments status, y1it , is drawn from (23), his gross income, y3it , is drawn from (26),
and his medical out-of-pocket expenditures, y4it , are drawn from (27), all conditional on his
personal state variables zit and his treatment choice. Consequently, when the consumer makes
his choice, he does not know Ujit , but only E[Ujit |ε jit, zit , j]. When maximizing his expected
lifetime utility, the consumer takes into consideration his health transition determined by (22),
aging, and aggregate transitions determined in part by the equilibrium market shares st , and
he discounts the future not only by β, but also by the survival probability given by (24). The
REE for this medical treatment model is solved the same way as described for the generic
model, and the externality we described for the generic model takes the same form.20

Intuitively, the dynamic aspects of the consumer choice problem are motivated by the
trade-off between health and ailments, as well as the trade-off between current expenditure
and health. Aging changes the balance, shortening lifetime horizon, and thus increasing the
likelihood of treatments based on more palliative care, but experience with medical profes-
sionals may overcome an initial reluctance to seek help. Dynamically, the prospects of success-
ful innovations encourages consumers to endure more hardship now in the hope of a healthier
life in years to come. Consumers can wait for new treatments to enter the market. However,
their patience only resolves some of the uncertainty as new treatments are grouped in clus-
ters with old treatments, and consumers only know the distributional characteristics of clus-
ters f jt (θ |K jt ) given by (20). A consumer resolves his uncertainty regarding a new treatment
after one period; thus, the characteristics of repeat prescriptions are known to him. Conse-
quently, the market is the main source of consumer learning. Alternatively, consumers can
take an experimental treatment hoping to obtain early access to the next breakthrough; such
choice always entails facing the uncertainty associated with the distribution of new treatment
shocks fv(v).

5. estimation

We identify and estimate the model sequentially: (i) treatment characteristics, individual
transitions for mortality, health and labor supply, and processes for ailments, income, and
medical expenses; (ii) entry, exit, and innovations in medical treatment; (iii) clustering; and
(iv) individual utility. Drawing upon parameter estimates obtained in the earlier stages where

20 Given the TIEV assumption for the disturbance term, � jt (p), in Equation (10) equals − ln p jt , and hence, the
expression for the selection correction to E[Uj (ht , yt )|zt , j] reduces to −p−1

jt . (See Hotz and Miller, 1993.)



972 hamilton et al.

appropriate, each piece is estimated separately. The entire procedure is repeated 500 times to
obtain bootstrapped estimated standard errors that account for the sequential process.

In the first step, treatment characteristics θk are identified and estimated using observed pa-
tient health outcomes for given treatment choices: effectiveness, θ (health)

k , is estimated using

the process for future health, hit+1, in (22); the (lack of) side effects θ (ail)
k is estimated using

the process for physical ailments, y1it , in (23). The transition function for health along with
other state transitions and outcomes and survival probabilities are identified and estimated us-
ing their sample analogues. The second step is to estimate centroids for innovation and the
magnitude of previous innovations for each t using treatment characteristics and Equations
(16) and (19). Then we estimate Equation (17) that governs innovation. The residuals of this
equation are used to nonparametrically estimate the two-dimensional distribution of innova-
tion shocks fν . The third step uses the estimated treatment characteristics to form clusters us-
ing the clustering rule c(Kt ) described in Appendix A.8. The characteristics of the treatments
in each cluster and treatment shares yield the distribution of characteristics induced onto the
jth cluster at t given by Equation (20).

The last step, described below, estimates the utility function with a CCP estimator using
the optimality conditions that arise from dynamic discrete choice. (See Appendix A.8.4.) The
forward-simulation procedure we implement is a multistage algorithm that modifies the ap-
proach of (Altuğ and Miller, 1998) to our context, where the choice set evolves over time: (a)
Estimate flexible parametric CCPs from observed consumer behavior that control for the ag-
gregate state as well as person-specific state variables to predict treatment choices given pos-
sible counterfactual future choice sets drawn from the endogenous, stochastic processes of en-
try and exit estimated in previous steps; (b) simulate a collection of aggregate paths describ-
ing the evolution of a hypothetical market for each observation (i, t) (i.e., the evolution of
available products and population characteristics), using the CCPs and the entry and exit pro-
cesses; (c) given the aggregate paths constructed in step (b) and the CCPs simulate a choice
and transition path for each observation (i, t); (d) set β = 0.95 and estimate the utility func-
tion parameters in (28) using a Generalized Method of Moments (GMM) estimator; the esti-
mator has a closed form because simulated lifetime utility is linear in the remaining parame-
ters. Appendix A.8 further elaborates these steps.

5.1. Life-Cycle Processes and Treatment Characteristics. Tables A.10–A.14 in Ap-
pendix A.15.1 report the point estimates of the individual processes; almost all of the coeffi-
cients are statistically significant at the 5% level. Figure 6 depicts the estimated relationship
between current-period health and other state variables and outcomes. The relationship be-
tween current and one-period-ahead health is nearly linear; health deteriorates over time
but is somewhat persistent. The effect of current health on other processes is highly nonlin-
ear. When the CD4 count falls below about 250 (the AIDS threshold), sharp changes occur;
mortality, ailments, and medical expenditures increase; and labor supply and income decline.
These large shifts illustrate the well-known fact that a declining CD4 count caused by HIV
infection has only a small impact on observed health until very low levels are reached, at
which point it becomes catastrophic.

The estimated equations for individual-level outcomes and transitions exhibit additional
patterns that have been found elsewhere. Survival is higher for black men and for those not
suffering physical ailments. Labor supply increases with education, past participation in the
job market, and up until age 40. Gross income decreases with ailments (poor physical health
reducing productivity), increases with employment and education, and is concave in age.
Black and Hispanic men earn less on average than white men, suggesting that racial/ethnic in-
equality in labor outcomes, evident in many other samples, extends to the HIV+ population.

Out-of-pocket medical expenditures increase with age, education, and ailments (control-
ling for treatment usage), perhaps due to expenditures on other health conditions. Controlling
for health status, education, labor supply, and treatment, minorities spend less out-of-pocket.
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Notes: CD4 count measured in hundreds of cells per microliter. LOR stands for log odds ratio. OOP stands for out-
of-pocket. Semestral income and expenditures measured in real $U.S. indexed to 2000.

Figure 6

effect of current health on future health and outcomes
[color figure can be viewed at wileyonlinelibrary.com]

Employment increases expected expenditures, possibly reflecting different pricing schemes for
public versus private insurance. Finally, we find that out-of-pocket prescription expenses are
incurred when taking experimental treatments, but 27% less than when taking commercially
available treatments; Santolaya Perrín and García López (2008) find a similar gap in out-
of-pocket prescription expenses of 33%. A caveat of our model is that it does not incorpo-
rate the role of insurance on out-of-pocket expenditures that could lead to biased estimates
of the nonpecuniary costs of taking treatment. We show in Appendix A.7.1 that insurance is
not strongly correlated with either labor participation or health, but it does decrease out-of-
pocket expenses for individuals taking commercial treatment. Since 88% of our sample is cov-
ered by insurance, we do not think that this issue is critical and leave for future research the
exploration of the role of insurance on demand externalities in innovation.

5.2. Innovation and Entry. Table 3 presents our coefficient estimates associated with the
systematic components of (17), the innovation process that determines the distribution of
characteristics of new commercial treatments and experimental treatments.21 The positive pa-
rameter estimates for φ(health)

1ν and φ
(ail)
1ν indicate that the market share of the experimental

treatment has a positive effect on the mean characteristics of new treatments next period. The
negative constants imply that in the absence of any clinical trials, the mean characteristics of
new treatments would be inferior to the current share-weighted mean. Thus, expected effec-
tiveness innovations are positive for lagged shares of the experimental treatment above 5.6%,

21 Table A.15 in Appendix A.15.1 reports our estimates of the treatment characteristics, obtained from the health
and ailments processes.
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Table 3
innovation components

Health Innovation Ailments Innovation

coef. Variable est. se coef. Variable est. se

φ
(health)
1ν set−1 433.11 (21.04) φ

(ail)
1ν set−1 1.93 (0.35)

φ
(health)
0ν Constant −24.14 (1.56) φ

(ail)
0ν Constant −0.15 (0.03)

Notes: Estimates from (17). In the table, “coef.” stands for coefficient and “est.” stands for estimate; “se” stands for
standard error, in parentheses, computed using subsampling with 500 subsamples.

and expected innovations on the ailments dimension are positive for lagged shares of the ex-
perimental treatment above 7.7%. Since the mean share of the experimental treatment is 7%
in our sample (Table 2), new treatments are more effective than the prevalent technology on
average, but have more side effects. Therefore, the improvement seen on the mean ailments
over time is due to the equilibrium selection of consumers favoring treatments with fewer ail-
ments.

Figure 7 depicts the estimated distribution of innovation shocks, fν (ν), formed from the
residuals of (17). Conditional on the previous share of the experimental treatment, the den-
sity is unimodal and approximately bell shaped: small innovations are the norm. In addition,
there is positive correlation of 0.24 between the two quality dimensions: shocks improving ef-
ficacy tend to be accompanied by fewer side effects. The second component of the innovation
process is the distribution of the number of new commercial treatments.22 Table A.16 in Ap-
pendix A.15.1 reports the estimates of the coefficients φN

1 and φN
2 in (18); they imply that the

expected number of new treatments increases with both the size of previous innovations and
the previous share of the experimental treatment. Figure A.3 in Appendix A.15.1 plots the
estimated unconditional distribution against the relative frequencies of entry, illustrating the
satisfactory fit between model and data.

5.3. Clusters. The clustering algorithm minimizes a distance metric between treatment
characteristics within the cluster, without regard to vintage. We tested the algorithm with two,
three, and four clusters. As Figure 8 shows, when J = 3, one cluster typically picks out older
products in the lower left quadrant, whereas another one generally captures treatments in the
upper right quadrant. Using only two clusters often yielded a vertical ranking on effectiveness,
erasing trade-offs between efficacy and propensity to cause ailments. As shown in Table A.9 in
Appendix A.8, using four clusters dramatically decreases statistical power by severely reduc-
ing the number of individuals per cluster at any given time.

In the estimated model, individuals are randomly assigned a treatment from their preferred
cluster according to qk jt (k|K jt ) given in (20). Point estimates reported in Table A.17 in Ap-
pendix A.15.1 indicate that treatments with relatively harsh side effects within their cluster
are also less likely to be assigned.

5.4. Preferences. We estimate the preference parameters and corresponding standard er-
rors under the constraint that utility is nondecreasing in income, in other words α(inc) ≥ 0.23

Setting β = 0.95 yields the lowest value of the econometric criterion function among the lim-
ited set {0.8, 0.9, 0.95}, so we report the remaining parameter estimates when β = 0.95 in

22 The third component of the law of motion of the set of available treatments is the exit rules. We set the exit
thresholds s and s using their sample counterparts, the minimum values observed in the data, at 0.0047 and 0.0012, re-
spectively.

23 We also estimate the model and obtain standard errors without imposing this constraint. Because the constraint
is not binding, the point estimates are identical. Only the standard errors change and the only qualitative change is
that the net income utility coefficient becomes insignificant.
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Notes: fν (ν) is estimated nonparametrically off the residuals from (17).

Figure 7

distribution of innovation shocks, fν (ν).
[color figure can be viewed at wileyonlinelibrary.com]

(a) Two Clusters (b) Three Clusters (c) Four Clusters

Notes: Treatments commercially available in the second semester of 1997 grouped into two to four clusters.

Figure 8

varying the number of clusters
[color figure can be viewed at wileyonlinelibrary.com]
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Table 4
utility parameters, ut

coef. Variable est. se

α(inc) NetIncomet (y3t − y4t ) 0.057 (0.023)
α(ail) NoAilmentst · NoTreatmentt (y1t d0t ) 1.019 (1.120)

Cluster Experimental Repeat
j = 1, 2, 3 j = J + 1 j = J + 2

coef. variable est. se est. se est. se

α
(dem,w)
j White −3.546 (0.703) −1.468 (0.309) 0.502 (0.459)

α
(dem,b)
j Black −4.190 (0.751) −2.553 (0.351) 0.276 (0.477)

α
(dem,h)
j Hispanic −3.967 (0.825) −1.585 (0.363) 0.707 (0.391)

α
(dem,a)
j Aget 0.043 (0.012) 0.032 (0.006) 0.009 (0.007)

α
(health)
j ht/103 −2.021 (0.417) −2.461 (0.189)

Notes: Estimation of (28). In the table, “coef.” stands for coefficient and “est.” stands for estimate; “se” stands for
standard error, in parenthesis, computed using subsampling with 500 subsamples; ht is defined as the number of white
blood cells per cubic millimeter of blood.

Table 4. Similar to results in Chan and Hamilton (2006) and Papageorge (2016), estimated
utility increases with net income, and untreated individuals value no ailments more highly
(since α(ail) > 0). We find that all individuals lose utility from being treated, African Ameri-
cans and Hispanics the most; African Americans obtain the largest disutility from consuming
experimental treatments.24 Age mitigates the utility costs of new treatments, both commercial
and experimental. Consuming new treatments, especially experimental, is less costly for the
most unhealthy, who, on average, have found their previous treatments unsuccessful. Finally,
the utility of remaining on a treatment is positive relative to trying a new treatment, but not
significantly different from the baseline no-treatment option.

6. technological progress in medical treatment

The final section of our analysis draws upon the model and our parameter estimates to ad-
dress the following four questions: How well does the model track the aggregate features of
the data? Given the specification and the estimates of the model, how likely were the key in-
novations that were observed over this period? What is the quantitative impact of the exter-
nality evaluated at the REE? How much would subsidizing experimental treatments improve
matters?25

6.1. Fitting the Aggregate Data. Figure 9 plots actual treatment choices over time along
with those generated by the estimated model given the state at every point in time. The lat-
ter captures the main trends in the data, including the rise in repeated usage as treatments im-
prove over time and the decline in the share of individuals not consuming any treatment. The
model also captures shifts over time in the share of individuals trying something new, either

24 The greater disutility among African Americans from consuming experimental treatments may be due to treat-
ment costs, different expected health outcomes, and/or greater distrust in the medical system resulting from events
such as the infamous Tuskegee experiment (Harris et al., 1996; Alsan and Wanamaker, 2018).

25 In addition, in Appendix A.15.3, we study the evolution of treatment quality if consumers had less influence over
the process of innovation, restricting the role of demand pull. We find that eliminating the effects of repeat consump-
tion improves health and survival, but leads to more physical ailments. The reason is that once the process of innova-
tion has delivered a baseline level of effectiveness, individuals switch toward medical treatments with fewer side ef-
fects despite the detrimental impact on their survival.
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Notes: Simulated and empirical choice shares over time.

Figure 9

goodness of fit
[color figure can be viewed at wileyonlinelibrary.com]

by consuming experimental treatments or by choosing a cluster that entails assignment to a
new treatment.26

6.2. How likely Was HAART?. We assess the likelihood of a large innovation such as
HAART by comparing simulated paths the model generates, plotted as gray lines in Fig-
ure 10, with the realized path observed in the data, the black line. We simulated 100 paths
starting at two distinct dates, namely. the first semester of 1991, prior to the breakthroughs
when overall health was declining, and the second semester of 1996, shortly after the introduc-
tion of HAART when the trend in average health was reversed. The six panels of Figure 10
display average population CD4 count, ailments, and survival along with paths for the two
start dates until the end of the sample period in 2008.27

Strictly interpreted within the confines of the estimated model, the top three panels show
that the improvements in health and survival rates immediately following the introduction of
HAART in 1996 are extraordinary, but the reduction in ailments is much closer to central
tendencies of the simulation process. The abrupt departure by the historical path from the
mass covered by the simulation process should not be construed as a model misspecification.
HAART was widely hailed as a revolutionary discovery at the time, underlining our opinion
that it is useful to treat technological progress as a nonstationary process allowing for break-
throughs.

The bottom panels in Figure 10 displaying simulations beginning in 1996 convey a more nu-
anced picture. Consumers do not expect great improvements in abating ailments, but never-
theless entertain the possibility that on this dimension, they might get much better, or much
worse: in reality, modest improvements occur. However, the model also predicts that given the
state of technology at the end of 1996, in the 12 years, following health will improve more
than, but survival rates less than, what actually occurs. Not only was HAART unpredictable
(falling outside the 95% confidence band), but so were the years following, to a lesser degree,
even though innovations after 1996 proceeded in relatively small steps.

6.3. The Social Benefit of Clinical Trials. From (13) and (15), the externality associated
with the REE distorts all the choices. Nonetheless, we focus on just one alternative, experi-
mental treatments. Aside from implementing an optimal subsidy for experimental treatments,
social welfare can be further improved only by changing the market shares of commercially

26 In the years just prior to HAART introduction, the efficacy of commercially available treatments had increased,
pushing up the reference point for innovation and thus attracting more individuals into clinical trials. See our ani-
mated appendix.

27 Other simulated quantities can be found in Figure A.4 in Appendix A.15.2.
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Notes: One hundred simulated paths conditional on the state of the world at 91-S1 and 96-S2.

Figure 10

distribution of technology paths: individuals

available products. Although the entire medical treatment industry is heavily regulated, ex-
perimental treatments are among the most regulated, giving greater scope for public health
authorities to affect their usage. In addition, because less healthy consumers are more likely
to participate in trials, policies that induce innovation by subsidizing experimental treatments
tend to favor the most disadvantaged.

Table 5 summarizes two measures of the externality: a marginal measure evaluated at the
REE, which we present in this subsection, and a second measure capturing the welfare gains
from a subsidy policy, which we present in the next subsection. Both measures are evalu-
ated at two points in time: 1991 (first semester) and 1996 (second semester). Recall that from
Figure 1(c), these points bracket the spike that occurred in experimental treatments when
HAART was discovered; the share of the experimental treatment in these two semesters is
comparable at 0.10 and 0.09, respectively.

As a point of reference, we provide benchmark utilities for the REE in the first panel of Ta-
ble 5. As a consequence of the breakthrough, average lifetime utility, normalized to wealth,
increased by $9,000 between these two points in time. The second panel shows the differences
in lifetime utility between the sicker, those with a CD4 count below two hundred (ht < 200),
and the healthier (ht ≥ 200). The improvement for sicker consumers, $39,000, is much more
pronounced than for healthier consumers, $12,000. Technology alone closes the gap in lifetime
utility between the healthier and the sicker by about 28%.

The third line in the first panel of Table 5 presents our marginal measure of the external-
ity. Increasing the market share of the experimental treatment by a 10th of a percentage point
raises expected lifetime utility by $323 in 1991 (from a base of $344,000) and by $238 in 1996
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Table 5
optimal demand for experimental treatments

Policy Introduced at

91-1 96-2

REE share of experimental treatment, set 0.102 0.092
REE average lifetime utility 344 353
Change on average lifetime utility from adding 0.001 to set 0.323 0.238
REE average lifetime utility (sicker) 266 305
REE average lifetime utility (healthier) 361 373
Gap (healthier - sicker) 95 68
SPP share of experimental treatment, s∗

et 0.113 0.175
SPP average lifetime utility 345 359
Flat subsidy required to decentralize s∗

et 2.5 15
Flat tax required to fund the subsidy 0.282 2.629
SPP average lifetime utility (sicker) 267 315
SPP average lifetime utility (healthier) 363 377
Gap (healthier - sicker) 96 62

Notes: Social planning problem solved at the first semester of 1991 and the second semester of 1996. REE stands for
rational expectations equilibrium; SPP stands for social planning problem. Monetary values in thousands of real $U.S.
indexed to 2,000. Sicker (Healthier) individuals are those with CD4 counts below (at or above) 200.

(from a base of $353,000).28 Both positive numbers imply that on the margin, there are social
gains from increasing consumption of experimental treatments in clinical trials at the REE.

6.4. Subsidizing Consumers to Participate in Clinical Trials. Policy counterfactuals that af-
fect the primitives generating both the demand and supply curves cannot be analyzed in
our model, because we only estimate a reduced form of supply for the equilibrium generat-
ing the data. Confining the counterfactual analysis to a one-period shift, however, inoculates
our results against this limitation because there is no supply response to unanticipated policy
changes that only last one period; the estimated reduced-form supply process applies before
and after the temporary intervention. The last exercise we conduct is to estimate the potential
welfare gains from subsidizing the consumption of experimental treatment with a flat subsidy
at different rates for one period.

Table 5 and Figure 11 present the results from this exercise at the first semester of 1991 and
again at the second semester of 1996.29 The dashed line in Figure 11 plots the amount of the
subsidy per consumer of the experimental treatment required to attain a given increase in the
market share of the experimental treatment from the REE (calibrated on the horizontal axis).
The subsidy required to achieve a given increase in the level of adoption in 1996 does not dif-
fer much from the rate required to achieve a similar increase in 1991.

The solid line displays the average net gains as a function of the increase in market share;
it smooths the point-dash line crisscrossing it, the predicted experimental treatment share cal-
culated for each level of subsidy separately.30 The vertical dotted line marks the optimal one
period intervention; the third panel in Table 5 reports the estimates. In 1991, the planner’s
optimal share of consumers using the experimental treatment is approximately the same as
the decentralized share. The utility costs of increased consumption of experimental treatments
quickly outweigh the marginal benefits from increasing the share of the experimental treat-
ment (e.g., through speeding up innovation) in a time when individuals are very sick, no good

28 These numbers are obtained by multiplying the derivative of the average lifetime utility function, evaluated at
the REE, by 0.001.

29 We discretize the share of the experimental treatment in increments of 0.005 units and simulate aggregate life-
time utility 1,000 times for each value.

30 The solid line in Figure 11 applies a fifth degree local smoothing polynomial over the point-dash line represent-
ing the predicted experimental treatment calculated for each level of subsidy. We use the smoothed version when
evaluating marginal gains and the optimal increment. Appendix A.15.4 contains further details.
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Notes: On the left (right) panel is the first (second) semester of 1991 (1996). On the x-axis are increments in the ex-
perimental treatment’s share over the decentralized share set . The solid line represents average gains in welfare over
the decentralized allocation. The dashed line indicates the subsidy per participant necessary to decentralize a given
increment. The dotted line indicates the planner’s optimal increment over set .

Figure 11

optimal assignment of experimental treatment with a flat subsidy
[color figure can be viewed at wileyonlinelibrary.com]

treatments have been invented and previous innovations have been small. In 1991, the opti-
mal subsidy is $2,500 financed with a lump-sum tax of $282 on HIV+ individuals; it raises av-
erage lifetime utility by $1,000. By 1996, large innovations have occurred, our estimates of the
innovation process show that further innovations are therefore more probable, and consumer
health is rapidly improving. Compared to 1991, the optimal subsidy is six times as large and
the flat tax financing it is about 10 times higher in 1996; however, average lifetime utility in-
creases by about $6,000 to $359,000.

Not only are average net benefits, the subsidy rate and financing costs greater in 1996 than
in 1991; so is the change in the distribution of benefits in the bottom panel of Table 5. Health-
ier consumers gain an estimated $2,000 from a 1991 intervention, but sicker consumers only
an estimated $1,000, compared to a gain of 10 times that amount from a 1996 intervention,
healthier consumers gaining $4,000. Thus, the gap between the two groups would increase
slightly in 1991, but shrink by about $6,000 in the event of a 1996 intervention. Note though
that the decline in inequality is not at the expense of healthier consumers. Equity increases
because the sicker benefit the most from faster innovation. Consequently, the subsidy reduces
free-riding by healthier consumers that occurs predominantly at the expense of the sicker.

Figure 11 also shows that in 1996, the optimal experimental treatment share lies 8 percent-
age points above its REE counterpart, almost twice as high, generating welfare gains that out-
weigh individual losses due to consumption of experimental treatments. In 1991, however, in-
creasing the share by more than about 1 percentage point yields net losses. These differences
are reflected in the subsidy rates: the figure shows that any subsidy less than the optimal one
increases welfare, which imparts considerably more flexibility in setting a welfare-improving
subsidy rate in 1996 (since the optimal subsidy is $15,000) than in 1991.

One last comparison is illuminating: we find the discovery of HAART improves average
welfare by about $9,000; correcting the experimental share for the distortion in the REE only
increases welfare by one-ninth of that amount in 1991, but by two-thirds in 1996. These results
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suggest that the potential benefits from ameliorating externalities by subsidizing the consump-
tion of experimental treatment vary substantially in the course of developing medical treat-
ments.

7. conclusion

We provide a framework to assess how consumer choices affect technological progress. In
our case, aggregate consumer demand affects not only the speed of innovation, but also the
direction of innovation in cases where product quality is multidimensional. We apply our
framework to study consumer behavior and innovation in the market for HIV drugs. We cap-
ture several mechanisms through which consumer demand affects innovation, including ex-
perimentation with new drugs by participating in clinical trials, which accelerates the entry
and increases the expected quality of new treatments. We show that individually, optimal con-
sumer behavior can slow the process of innovation due to a distaste for experimentation.
Moreover, individuals do not internalize the consequences of their treatment choices on other
consumers’ welfare, implying an externality that arises through the impact on technological
progress. Our estimates show that providing incentives for consumption of experimental treat-
ments can improve social welfare and equity.

appendix A

A.1 Data Appendix. Data collection for the MACS started in 1984 with 4,954 men en-
rolled.31 Two more enrollments have taken place: one in 1987–1991 (668 additional men) and
another in 2001–2003 (1,350 additional men). We only use data from the first two enrollments.
Since data are semiannual, each period t corresponds to six months. Below we describe the
main variables we use in our study:

Health (hit ): At every visit, individuals undertake a physical examination that includes a
blood sample that provides a measure of underlying health status: the individual’s CD4 count.
We denote as hit the CD4 count of the individual at the start of period t. According to the offi-
cial U.S. government’s website for HIV:32

The CD4 count is [...] a snapshot of how well your immune system is functioning. CD4 cells (also
known as CD4+ T cells) are white blood cells that fight infection. [...] These are the cells that the
HIV virus kills. As HIV infection progresses, the number of these cells declines. When the CD4 count
drops below 200 [cells per microliter] due to advanced HIV disease, a person is diagnosed with AIDS.
A normal range for CD4 cells is about 500-1,500.

Ailments (y1it ): Starting at visit 4, individuals are asked about physical symptoms. We focus
on unusual bruises lasting at least two weeks, unintentional weight loss of at least 10 pounds,
fatigue, diarrhea, fever, night sweats, and tender/enlarged glands. Individuals are asked if they
have felt each of the ailments for at least three days during the period. Although individu-
als are asked explicitly about side effects starting at visit 13, we choose not to use this part of
the data because it lacks consistency over time and more importantly, because individuals are
most likely unable to correctly distinguish between side effects and symptoms. In our model,
y1it takes the value of 1 if an individual reports having any of the problems mentioned above.

Labor supply (y2it ): Whether the individual worked full time (35 hours or more per week)
during period t.

31 Data in this manuscript were collected by the MACS with centers (Principal Investigators) at The Johns Hopkins
Bloomberg School of Public Health (Joseph B. Margolick, Lisa P. Jacobson), Howard Brown Health Center, Fein-
berg School of Medicine, Northwestern University, Cook County Bureau of Health Services (John P. Phair, Steven M.
Wolinsky), University of California, Los Angeles (Roger Detels), and University of Pittsburgh (Charles R. Rinaldo).
The MACS is funded by the National Institute of Allergy and Infectious Diseases, with additional supplemental fund-
ing from the National Cancer Institute. UO1-AI-35042, 5-MO1-RR-00052 (GCRC), UO1-AI-35043, UO1-AI-35039,
UO1-AI-35040, UO1-AI-35041. Website located at http://www.statepi.jhsph.edu/macs/macs.html.

32 See https://www.hiv.va.gov/patient/diagnosis/labs-CD4-count.asp

http://www.statepi.jhsph.edu/macs/macs.html
https://www.hiv.va.gov/patient/diagnosis/labs-CD4-count.asp
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Table A.1
summary statistics by treatment chosen: subject visits, 1990–2007

Full Sample Experimental Commercial No Treatment

Observations 16851 1106 10980 4765
Ailments 0.43 0.54 0.46 0.32
Labor participation 0.63 0.60 0.60 0.71
Age 44.5 44.4 45.6 41.9

(8.0) (7.5) (8.0) (7.6)
CD4 475 385 456 540

(297) (304) (291) (298)
Gross income 17567 18054 17449 17727

(8787) (8677) (8801) (8776)
Out-of-pocket expenditures 266 282 337 98

(706) (986) (771) (360)

Notes: Standard deviation in parentheses. Gross income and out-of-pocket expenditures are semestral and measured
in real $U.S. indexed to 2000.

Income (y3it ): Starting at visit 14, individuals answer the question “Which of the follow-
ing categories describes your annual individual gross income before taxes?” For visit 14, cate-
gories are brackets that increase every $10,000, the last category being censored at “$70,000 or
more.” For visits 15–35, the brackets are censored at $50,000, and for visits 36–41, the brackets
are censored at $60,000. We censor at $50,000 to obtain a uniform question over time. Then
we assign the middle point to individuals in the bracket. For the highest bracket, we assign the
upper limit ($50,000). We divide gross income by two since our periods are half-years. Gross
income as well as out-of-pocket expenditures (below) are in real $U.S. indexed to 2000.

Out-of-pocket expenditures (y4it ): Starting at visit 14, individuals are asked a version of the
following question: “Please, estimate the TOTAL out-of-pocket expenses that you or other
personal sources (your lover, family or friends) paid for prescription medications since your
last visit.” This question is open so values are not categorized.

Demographics (ait ): Individuals are either white, black, or Hispanic, and their age increases
by half a year every period.

A.1.1 Products and product components. Starting at visit 6, individuals are asked about
their medication. From visit 13 forward, as the number of treatments available increases, they
answer separate survey modules for ARV drugs and non-antiretroviral drugs (NARVs). We
focus on ARVs since these are the drugs used to treat HIV infection. Below we provide the
empirical definition of experimental and commercial treatments that we use in the article.

Experimental treatment. Individuals are asked to name specifically which drugs they took as
well as whether or not they took the drug as part of a research study. In the original data,
some of the reported drugs are themselves coded as trials. We regard these instances as in-
dividuals consuming an experimental treatment. If an individual consumes at least one of his
drugs as part of a clinical trial, we regard the individual as consuming an experimental treat-
ment in that period.

Commercial treatment. We define a commercial treatment as a combination of product com-
ponents where no component is consumed in a clinical trial. (See Table A.2.) This definition
generates 1,835 treatments. We reduce the number of commercial treatments using the follow-
ing algorithm:

1. We start with the set of treatments that have more than 40 observations in the sample
and denote this the set of “core commercial treatments.”33 Our core commercial treat-

33 We tried different criteria for the minimum number of observations and treatment classification did not change
substantially. Since our definition of core commercial treatments can miss treatments appearing near the end of the
time period studied, we select the core products using all periods but exclude the last four periods from estimation.
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Table A.2
chemical formulas of product components

Component Short Name Chemical Formula

Isoprinosine IAD C52H78N10O17
Ribavirin RBV C8H12N4O5
Interferons (α/β) IFNs
Zidovudine AZT C10H13N5O4
Zalcitabine DDC C9H13N3O3
Egg lecithin AL-721
Acyclovir ACV C8H11N5O3
Didanosine DDI C10H12N4O3
Stavudine D4T C10H12N2O4
Nevirapine NVP C15H14N4O
Lamivudine 3TC C8H11N3O3S
Saquinavir SQV C38H50N6O5
Ritonavir RTV C37H48N6O5S2
Indinavir IDV C36H47N5O4
Nelfinavir NFV C32H45N3O4S
Lopinavir LPV C37H48N4O5
Abacavir ABC C14H18N6O
Efavirenz EFV C14H9CIF3NO2
Tenofovir TDF C9H14N5O4P
Emtricitabine FTC C8H10FN3O3S
Atazanavir ATV C38H52N6O7
Fosamprenavir FPV C25H36N3O9PS
Darunavir DRV C27H37N3O7S
Raltegravir RAL C20H21FN6O5

Notes: Consulted in PubChem (August, 2020) https://pubchem.ncbi.nlm.nih.gov

ments
are listed in Table 1 that shows that there are 70 core commercial treatments overall
with at most five components. Out of 20,142 subject-visit observations of individuals
taking commercial treatments, 13,767 are covered by treatments classified as core com-
mercial treatments.

2. We code the remaining 6,375 observations of noncore commercial treatments as core
commercial treatments using the steps below. Each step sequentially assigns the remain-
ing observations that were not assigned in previous steps.
(a) Noncore commercial treatment k is assigned to core commercial treatment k′ if k′ is

the core commercial treatment with the highest number of components that is con-
tained by k. Of the remaining 6,375 observations of noncore commercial treatments,
this rule assigns 2,963 uniquely and leaves 3,412 unassigned (1,647 that were assigned
to multiple core commercial treatments plus 1,765 that were not assigned to any core
commercial treatment).

(b) If assigned to multiple core commercial treatments in step (a):
i.First, we use the past history of the individual. If at period t, the individual is con-

suming noncore commercial treatment k′′ that was assigned to both core commer-
cial treatments k and k′ in step (a), and he was observed consuming core com-
mercial treatment k in period t − 1, then his treatment at t is recoded as k. We re-
peat this procedure until no further gains are obtained. Out of the remaining 1,647
observations assigned to multiple core commercial treatments, 428 are assigned
uniquely in this step.

ii.Second, we use the future history of the individual. If at period t, the individual is
consuming noncore commercial treatment k′′ that was assigned to both core com-
mercial treatments k and k′ in step (a), and he was observed consuming core com-
mercial treatment k′ in period t + 1, then his treatment at t is recoded as k′. We

https://pubchem.ncbi.nlm.nih.gov
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repeat this procedure until no further gains are obtained. Out of the remaining
1,219 observations assigned to multiple core commercial treatments, 274 are as-
signed uniquely in this step.

iii.Third, we use the core commercial treatment with the highest share at t. If at pe-
riod t, the individual is consuming noncore commercial treatment k′′ that was as-
signed to both core commercial treatments k and k′ in step (a), and skt > sk′t , then
his treatment at t is recoded as k. This final step assigns uniquely the remaining
945 observations assigned to multiple core commercial treatments.

(c) If not assigned to a core commercial treatment in step (a): we regard all 1,765 obser-
vations as “fringe treatments” since they do not contain any core commercial treat-
ment. We aggregate all fringe treatments that appear at period t into one single
“fringe mix,” and assign to it all users consuming this product over time. We only
consider fringe mixes that have at least 40 users. This reduces the number of obser-
vations by 345 (which represents 1.6% of the number of observations of individuals
using a treatment). This aggregation leads to 16 fringe mixes that we pool with the
set of core commercial treatments, which amounts to a total of 86 commercial treat-
ments overall. (See Table A.3.)

3. In the model, we specified that a treatment gets withdrawn from the market altogether
when its share falls below s for two consecutive periods. However, in the data, a treat-
ment may have a share below s for more than two consecutive periods and then reappear
again. Seventy-eight out of 86 core commercial treatments have unique spells without
“reappearance.” We regard the remaining treatments with multiple spells as measure-
ment error and follow the next procedure to ensure that treatments have unique spells
without reappearance. For every core commercial treatment k with reappearance:
(a) We identify all spells that treatment k has in the data. That is, we identify the first

spell and all reappearances.
(b) From those spells, we select the one that contains the period t ′ in which skt ′ was the

highest. We drop all observations of individuals consuming commercial treatment k
in other spells.

Out of 19,797 observations of individuals taking commercial treatments (20,142 minus
345 from step 2(c)), this smoothing procedure drops 42 observations leaving 19,755 ob-
servations of individuals taking commercial treatments. Supporting the importance of
the spells selected by this procedure, the maximum share in the selected spell is on av-
erage 24 times larger than the maximum share in other spells of the same commercial
treatment.34 Tables 1 and A.3 include entry and exit dates implied by this spell smooth-
ing procedure.

A.2 Model Parameterization Appendix.

A.2.1 Evolution of the choice set. In this section, we provide further details of the law of
motion of the set of available treatments as well as its empirical implementation.

Differential treatment effects. In the model, treatment characteristics do not vary across
races. Since we have limited data to fully relax this assumption, we explore here the possibility
of differential treatment characteristics across races in a limited fashion. Following the same
data criteria as in Appendix A.1, we first find the subset of treatments with at least 40 black
users and the subset of treatments with at least 40 Hispanic users. We then interact the charac-
teristics of those treatments in Equations (22) and (23) with race/ethnicity. The Fixed columns
of Table A.4 present the estimates of the model with no interactions. (See also Table A.15.)

34 In addition to this procedure, we tried (i) selecting the spell with the highest average share and (ii) selecting the
spell with the highest sum of shares. All criteria result in very similar entry and exit dates.
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Table A.4
allowing for differential treatment characteristics by race

Health, θ (health)

Fixed Interacted Model

Baseline Black Hispanic

Treatment est. se est. se est. se est. se

AZT −12.004 (2.697) −13.083 (2.836) 11.620 (7.630) −1.429 (10.132)
AZT/ACV −12.752 (4.764) −12.524 (5.270) −0.580 (14.031) −7.996 (15.890)
DDI 15.263 (4.574) 10.500 (5.007) 18.206 (13.458) 16.269 (15.758)
D4T 39.776 (6.299) 35.932 (7.420) 28.900 (17.128) −7.342 (14.854)
AZT/3TC 34.398 (6.227) 33.008 (7.076) 7.570 (15.004)
AZT/3TC/IDV 65.041 (6.220) 63.981 (6.656) 50.301 (27.399) −38.594 (17.388)
AZT/NVP/3TC 46.275 (7.123) 48.631 (7.310) −14.614 (22.904)
D4T/NVP/3TC 46.846 (9.161) 39.110 (11.207) 12.617 (21.152)
AZT/3TC/NFV 50.776 (10.417) 55.120 (12.008) −16.881 (23.696)
D4T/3TC/NFV 48.018 (10.212) 42.722 (10.330) 31.994 (35.497)
AZT/3TC/EFV 43.526 (5.327) 50.587 (6.394) −22.661 (11.775) −2.925 (23.985)
3TC/ABC/EFV 53.341 (8.516) 53.483 (9.367) −1.891 (22.681)
AZT/3TC/ABC 54.824 (10.999) 43.748 (13.699) 32.510 (22.542)
AZT/3TC/LPV/RTV 49.838 (12.997) 50.021 (14.166) −0.718 (30.172)
3TC/EFV/TDF 47.790 (10.024) 46.582 (11.379) 11.952 (24.054)
3TC/LPV/RTV/TDF 51.672 (11.705) 40.431 (11.734) 35.023 (28.730)
3TC/ABC/EFV/TDF 31.846 (13.014) 29.723 (15.283) 7.040 (28.846)
AZT/3TC/LPV/RTV/ABC 9.855 (14.503) 31.029 (27.445) −29.062 (32.178)
EFV/TDF/FTC 54.798 (4.453) 56.572 (5.682) −2.546 (9.855) −8.747 (12.511)
RTV/TDF/FTC/ATV 53.028 (5.309) 57.060 (6.708) −11.569 (11.726) −4.244 (16.299)
LPV/RTV/TDF/FTC 46.723 (7.767) 48.031 (10.202) −3.566 (15.270)

Ailments, θ (ail)

Fixed Interacted Model

Baseline Black Hispanic

Treatment est. se est. se est. se est. se

AZT −0.500 (0.041) −0.570 (0.044) 0.491 (0.126) 0.427 (0.163)
AZT/ACV −0.539 (0.080) −0.653 (0.089) 0.685 (0.269) 0.556 (0.280)
DDI −0.375 (0.071) −0.403 (0.081) −0.072 (0.189) 0.520 (0.261)
D4T −0.717 (0.092) −0.721 (0.105) 0.083 (0.257) −0.130 (0.317)
AZT/3TC 0.064 (0.094) 0.056 (0.104) 0.448 (0.263)
AZT/3TC/IDV −0.075 (0.081) −0.030 (0.090) −0.026 (0.274) −0.062 (0.351)
AZT/NVP/3TC 0.109 (0.111) 0.069 (0.120) 0.237 (0.311)
D4T/NVP/3TC −0.386 (0.121) −0.511 (0.150) 0.635 (0.274)
AZT/3TC/NFV −0.432 (0.122) −0.635 (0.139) 0.830 (0.291)
D4T/3TC/NFV −0.881 (0.130) −0.967 (0.145) 0.484 (0.352)
AZT/3TC/EFV 0.342 (0.085) 0.369 (0.106) −0.101 (0.186) −0.024 (0.359)
3TC/ABC/EFV 0.108 (0.125) 0.065 (0.139) 0.400 (0.346)
AZT/3TC/ABC −0.442 (0.128) −0.582 (0.158) 0.415 (0.267)
AZT/3TC/LPV/RTV −0.655 (0.180) −0.627 (0.217) −0.095 (0.387)
3TC/EFV/TDF −0.011 (0.154) 0.103 (0.178) −0.387 (0.366)
3TC/LPV/RTV/TDF −0.092 (0.174) −0.070 (0.212) −0.084 (0.369)
3TC/ABC/EFV/TDF −0.308 (0.178) 0.057 (0.219) −1.200 (0.398)
AZT/3TC/LPV/RTV/ABC 0.298 (0.274) −1.476 (0.506) 2.608 (0.637)
EFV/TDF/FTC 0.118 (0.067) 0.173 (0.083) 0.000 (0.157) −0.460 (0.191)
RTV/TDF/FTC/ATV 0.138 (0.090) 0.079 (0.118) 0.384 (0.203) −0.436 (0.266)
LPV/RTV/TDF/FTC −0.183 (0.135) −0.526 (0.165) 0.972 (0.287)

Notes: Treatment characteristics are estimated as indicators for treatment usage in (A.12) and (A.13). Only the char-
acteristics of treatments that are interacted with race/ethnicity are shown here, all other estimated coefficients are
omitted. The first panel corresponds to health characteristics, and the second panel corresponds to ailments charac-
teristics. In the table, “est.” stands for estimate and “se” stands for standard errors, in parenthesis. The Fixed columns
correspond to the estimates of treatments characteristics not allowing for race interactions (Table A.15). The Inter-
acted Model columns correspond to the estimates when treatment characteristics are interacted with race/ethnicity.
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Table A.5
measures of adherence by race

(1) (2) (3) (4) (5)

est. se est. se est. se est. se est. se

Black −0.278 (0.027) 0.124 (0.017) −19.364 (2.713) −0.165 (0.046) −0.004 (0.008)
Hispanic −0.027 (0.043) −0.042 (0.028) 6.918 (4.353) 0.087 (0.075) −0.014 (0.012)
Observations 6071 5708 5708 3498 6082

Notes: Linear regressions of five measures of adherence on race/ethnicity. Controls for health, education, age, and
prior labor participation are also included in the regression but omitted from the table. Measure (1) is a ranking from
1 (never) to 5 (always) indicating how closely individuals follow treatment schedule. Measure (2) is an indicator for
whether individuals skipped medication. Measure (3) is the number of days without skipping medication. Measure (4)
is an indicator for whether individuals followed special indications, provided that such indications were given. Mea-
sure (5) is an indicator for whether individuals took fewer pills than prescribed in any of the antiretroviral drugs pre-
scribed. In the table, “est.” stands for estimate and “se” stands for standard errors, in parenthesis.

The Interacted Model columns correspond to the estimates when treatment characteristics are
interacted with race. All other coefficients that are not interacted are omitted from the table.

The results show that the race interactions of effectiveness, that is, the health characteristic,
are not statistically significant for virtually all the treatments in the table. Moreover, the esti-
mated health characteristics of the baseline in the interacted model are very similar to those
of the model with no interactions. The results are slightly less clear-cut for the ailments char-
acteristic. About one-third of the treatments in the table have statistically significant inter-
actions with the black indicator. Moreover, out of eight treatments with a sufficiently large
number of Hispanic users, four have statistically significant interactions with the Hispanic in-
dicator. Overall, there seems to be no variation in effectiveness across race/ethnicity and only
weak variation in side effects. The race gradient of side effects could be caused by behavioral
differences such as adherence.

To explore differences in adherence by race, we exploit limited adherence data coming
from a battery of questions that were added to the MACS survey in the first semester of 1999.
We compare adherence using five measures pertaining to the six months prior to when the
questions are asked:

1. How closely did you follow treatment schedule? Answers range from 1 (never) to 5 (all
the time).

2. Did you skip medication? We create an indicator variable such that “Yes” = 1.
3. Number of days without skipping medication. For individuals who did not skip medica-

tion, this takes the value of 180. For other individuals, we calculate this number from
their answer to the question: When was the last time you skipped medication?

4. Did you follow special indications? This question is only asked among individuals who
declared that they were given special indications with their treatment. We create an in-
dicator variable such that “Yes” = 1.

5. Did you take fewer pills than prescribed in any of the antiretroviral drugs prescribed? We
create an indicator variable such that “Yes” = 1.

Table A.5 presents the results from regressing the measures of adherence on race/ethnicity
as well as other components of the individual state such as health, education, age, and prior
labor participation. For the first four measures, the black indicator is positive and significant,
and for the fifth measure, it is not significant. Focusing on measures 2–4, Table A.5 suggests
that black individuals are 12.4% points more likely to skip medication, have on average 19.4
fewer days without skipping medication (the sample average is 100.3 days), and are 16.5%
points more likely to not follow special indications, provided that such indications were given.
The Hispanic indicator is not significant for any of the measures.

According to the results in Table A.4, most of the ailments interactions with the black in-
dicator that are statistically significant (only a third are significant) are positive. These results
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Table A.6
autocorrelation of innovation shocks

Ailments, ν̄(ail)
t Health, ν̄(health)

t

(1) (2) (3) (4)
est. se est. se est. se est. se

ν̄t−1 −0.101 (0.155) 0.229 (0.154)
ν̄−1 −0.026 (0.199) 0.321 (0.191)
Observations 43 27 43 27

Notes: In the table, “est.” stands for estimate; “se” stands for standard errors, in parenthesis. Each regression con-
tains a constant that is omitted for simplicity. Columns (1) and (2) regress the average ailments innovation shock
on ν̄

(ail)
t−1 and ν̄

(ail)
−1 , respectively. Columns (3) and (4) regress the average health innovation shock on ν̄

(health)
t−1 and

ν̄
(health)
−1 , respectively.

are consistent with black individuals displaying lower adherence and mechanically reporting
lower side effects. Since adherence data are only available late in our sample period, we do
not include this mechanism in the model.

Correlation in innovation shocks. We show empirically that the characteristics of new treat-
ments are conditional displacements around recent prevalent technology (Equation (17))
where the random component is an innovation shock drawn from the distribution fν . This
relation generates correlation between the characteristics of current and future treatments.
Since new technologies draw from previous technologies in ways the centroid may not cap-
ture, it is conceivable that the innovation shocks themselves are correlated over time. We
show here that this is not the case in our data.

Because in several periods, there are multiples draws for ν, we define ν̄t as the average over
the innovation shocks of new treatments entering the market at t:

ν̄t = 1
Nt

⎛
⎝ ∑

k: k∈Kt , k/∈Kt−1

νkt

⎞
⎠,(A.1)

where Nt is the number of new treatments at t. Because in some of the periods, no new treat-
ments are introduced, we follow two different procedures to construct the lagged average in-
novation shock:

1. We substitute to zero the missing innovation shock averages from periods where there is
no shock. We then regress ν̄t on ν̄t−1.

2. We drop periods where there was no innovation shock and define ν̄−1 as the last average
innovation shock received prior to the current period. We then regress ν̄t on ν̄−1.

As shown in Table A.6, in both of these procedures, we find the coefficient of the autore-
gression to be not significant at the at 10% level. Our assumption that the innovation shocks,
ν, are drawn i.i.d. from fν is supported by the data.

The distribution of the number of new treatments. The number of new treatments Nt is dis-
tributed negative binomial with dispersion in the mean:

Nt ∼ Poisson
(
μ∗

t−1

); μ∗
t−1 ∼ Gamma

(
1/αN

t−1, α
N
t−1μt−1

)
μt−1 = exp(φN

1 κt−1 + φN
2 set−1); αN

t−1 = exp(φN
3 + φN

4 κt−1),(A.2)
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where the magnitude of previous innovations κt−1 is defined in (19) and the scaling weights,
which account for the fact that different characteristics may be measured in different scales,
are given by the maximum innovations observed in the data:

δ−1
r ≡ max

k: k∈Kτ ,k/∈Kτ−1, ∀τ>0

{
θ

(r)
k − ω

(r)
τ−1

}
, for r ∈ {ail, health}.(A.3)

The end of a treatment’s life cycle. The exit rule {s, s} introduced in Section 4 is defined as
follows: Recall that the market share of treatment k can be decomposed into new skt and re-
peat skt consumers (skt + skt = skt). Define the conditional share of commercial consumers as

s̃kt−1 ≡ skt−1∑
k′∈Kt−1

sk′t−1
,(A.4)

and the conditional share for new commercial consumers as

s̃kt−1 ≡ skt−1∑
k′∈Kt−1

sk′t−1
.(A.5)

No new consumers can access treatment k if s̃kt−1 falls below the critical number s for three
consecutive periods. Treatment k reaches the end of its life cycle when s̃kt−1 falls below the
critical number s for two consecutive periods. The number of consecutive periods for each exit
rule is chosen to match the data, where a single period of low demand does not always signal
the end of a treatment’s life cycle. This relaxation of the exit rule adds two state variables to
the aggregate state of the problem, E1

t−1 and E2
t−1, which are indicators of to what extent the

conditions for exit are binding:

E1
kt = I

{
s̃kt−1 < s

}(E1
kt−1 + I

{
s̃kt−1 < s

})
,(A.6)

E2
kt = I{s̃kt−1 < s}(E2

kt−1 + I{s̃kt−1 < s}),(A.7)

where E1
ktk

= E2
ktk

≡ 0. Exit for new consumers binds when E1
kt = 3 and exit for all consumers

binds when E2
kt = 2.

A tractable choice set. The clustering rule c(Kt ), which allows us to reduce the size of the
choice set, is characterized as the solution to a k-means clustering algorithm. At every period
t, the clusters j = 1, . . . , J are chosen to minimize:35

c(Kt ) =
J∑

j=1

∑
k∈Kt

I{k ∈ j}
∥∥∥θk − θ c

j

∥∥∥2
, θ c

j ≡
∑

k∈Kt
I{k ∈ j}θk∑

k∈Kt
I{k ∈ j} ,(A.8)

where
∑J

j=1 I{k ∈ j} = 1 for all k ∈ Kt . The within-cluster assignment probability is given by:

qk jt
(
k
∣∣K jt

) =
exp

(
x(weight)

kt γ (weight)
)

∑
k∈ j exp

(
x(weight)

kt γ (weight)
) ,(A.9)

35 See Duda and Hart (1973) and Andrew W. Moore’s K-means and Hierarchical Clustering tutorial at http://www.
cs.cmu.edu/∼awm/tutorials.html. (See Appendix A.8.2 for implementation details.)

http://www.cs.cmu.edu/
http://www.cs.cmu.edu/
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Table A.7
correlation between insurance, labor status, and health

variable est. se

LaborParticipationt , y2t 0.018 (0.005)
1{250 < ht−1 ≤ 500} −0.008 (0.006)
1{ht−1 > 500} −0.016 (0.006)
Observations 16,521

Notes: Independent variable is an indicator for whether an individual is covered by insurance. In the table, “est.”
stands for estimate; “se” stands for standard errors, in parenthesis. Regression also controls for age, race/ethnicity,
and education.

where x(weight)
kt includes a constant term, the ranking (within its cluster) of the characteristics of

the treatment, the number of members in the cluster, whether the treatment is new, and sev-
eral interactions. The vector of parameters γ (weight) is obtained from a nonlinear regression of
within cluster shares skt| j such that:

E
[
skt| j|x(weight)

kt

]
= exp

(
x(weight)

kt γ (weight)
)
, skt| j ≡ skt∑

k′∈K jt
sk′t
.(A.10)

A.2.2 Health insurance. We provide here an assessment of the importance of insurance, a
mechanism that is not included in our model. Using the insurance data from MACS, we cre-
ated the indicator insured that takes the value of 1 if the individual is covered by at least one
of the following: HMO, group private, individual private, Medicaid, Medicare, veteran’s ad-
ministration, champus/champva, and other. Out of 16,851 individual-visit observations in our
sample 88% were covered by insurance, 10% were not covered, and the remaining 2% had
missing insurance data.

We first test whether insurance is associated with labor or health status by regressing the in-
sured indicator on labor market participation, health, and other components of the individual
state. The results in Table A.7 indicate that although labor participation is significantly asso-
ciated with insurance status, the effect is small. Labor participation is associated with a 1.8%
point increase in the probability of insurance coverage. Health status is only significantly as-
sociated with insurance status for individuals with very high health (CD4 counts above 500).
High health is associated with a small decrease in the probability of insurance coverage of
1.6% points.

Finally, we explore the role of insurance on out-of-pocket expenses for prescription med-
ications. The second column of Table A.8 shows the estimates from our out-of-pocket pro-
cess in equation (27) and the fourth column shows the estimates adding insurance to the re-
gression. We find that insurance is associated with a statistically significant 25% decrease in
the expenses of individuals getting commercial ARV treatment and has no significant effect
on the ARV-related expenses of individuals getting experimental treatment. Insurance cov-
erage is also associated with a statistically significant increase of 373 dollars in the amount
of out-of-pocket expenses for prescription medication (conditional on having positive out-of-
pocket expenses). This direct effect suggests that insured individuals may be accessing more
NARV medications.

Because we have a rich measure of underlying health, we can confidently back out treat-
ment characteristics. Therefore, we do not consider that our estimated treatment characteris-
tics are affected by the omission of insurance. However, the results here suggest that the gap
in nonpecuniary benefits between commercial treatment and no treatment may be overesti-
mated; this would be the case if individuals not getting treatment were doing so due to lack of
insurance as opposed to disutility caused by treatment. This would also imply that the disutil-
ity from ailments when getting treatment may be overestimated as well. Since the majority of
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Table A.8
out-of-pocket expenditures and insurance

Baseline Interacted

variable est. se est. se

ht −0.002 (0.0004) −0.002 (0.0005)
h2

t /103 0.009 (0.002) 0.009 (0.002)
h3

t /107 −0.133 (0.033) −0.132 (0.029)
h4

t /1010 0.090 (0.031) 0.090 (0.022)
h5

t /1014 −0.266 (0.134) −0.265 (0.072)
h6

t /1018 0.279 (0.221) 0.278 (0.084)
Aget 0.037 (0.004) 0.033 (0.006)
Age2

t −0.0002 (0.00004) −0.0002 (0.0001)
Black −0.240 (0.013) −0.227 (0.021)
Hispanic −0.119 (0.015) −0.073 (0.024)
Some college 0.169 (0.016) 0.170 (0.026)
College 0.318 (0.018) 0.309 (0.033)
More than college 0.336 (0.019) 0.331 (0.030)
CommercialTreatmentt 0.429 (0.015) 0.541 (0.064)
CommercialTreatmentt ∗ Insuredt −0.136 (0.058)
ExperimentalTreatmentt 0.313 (0.018) 0.131 (0.125)
ExperimentalTreatmentt ∗ Insuredt 0.172 (0.131)
LaborParticipationt , y2t 0.105 (0.009) 0.087 (0.016)
NoAilmentst , y1t −0.122 (0.008) −0.120 (0.017)
Insuredt 0.373 (0.050)
Constant −1.459 (0.098) −1.671 (0.197)
σ o 0.862 (0.026) 0.741 (0.113)

Notes: In the table, “est.” stands for estimate; “se” stands for standard errors, in parenthesis. The Baseline
columns are identical to the ones in Table A.13 reporting the estimated out-of-pocket expenditures equation
we use in our model. The Interacted columns are from a model that adds interactions with insurance coverage.
CommercialTreatmentt = dJ+2,t +∑J

k=1 dkt . Insuredt is an indicator for whether the individual is covered by insur-
ance. Out-of-pocket prescription expenditures y4t are measured in real $U.S. indexed to 2000. Health, ht , is given by
the CD4 count measured in hundreds of cells per microliter. To use all observations, the regression with insurance in-
cludes indicators for missing insurance data, which affects only 330 observations out of 16,851.

Table A.9
distribution of users per cluster

Number of Clusters

Percentile 2 3 4

1st 10 3 1
5th 15 5 3
10th 17 10 5
25th 27.5 15 12
50th 41.5 27 19
75th 61.5 44 33
90th 146 82 65
Cluster-Periods 68 102 136

Notes: This table shows various percentiles of the distribution of number of users per cluster, conditional on a given
number of clusters per period. The last row displays the number of cluster-periods obtained for a given number of
clusters per period.

observations in the sample have insurance coverage, we think that these concerns do not rep-
resent a critical issue for us.

A.2.3 The modified value function. At the beginning of t, the realization of treat-
ment assignment for those who selected a cluster in the previous period is drawn using
the within-clusters probabilities qk jt , the realization of last period’s experimental treatment
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Table A.10
health effects on future health and ailments

Ailments, γ (ail) Health, γ (health)

variable est. se est. se

ht 0.008 (0.0004) 1.152 (0.015)
h2

t /103 −0.013 (0.001) −0.519 (0.048)
h3

t /107 0.109 (0.020) 4.375 (0.564)
h4

t /1010 −0.040 (0.012) −2.016 (0.281)
h5

t /1014 0.054 (0.026) 2.803 (0.494)
Constant −0.929 (0.041) −5.874 (1.455)

Notes: Parameters estimated using (A.12) and (A.13). In the table, “est.” stands for estimate; “se” stands for standard
errors, in parenthesis, computed using subsampling with 500 subsamples. Health, ht , is given by the CD4 count mea-
sured in hundreds of cells per microliter.

Table A.11
labor supply, y2t

variable γ (labor) se

ht 0.009 (0.0003)
h2

t /103 −0.013 (0.001)
h3

t /107 0.075 (0.006)
h4

t /1010 −0.013 (0.002)
Aget 0.102 (0.008)
Age2

t −0.001 (0.0001)
Black −0.168 (0.026)
Hispanic −0.040 (0.040)
Some college 0.312 (0.034)
College 0.537 (0.033)
More than college 0.613 (0.035)
LaborParticipationt−1, y2t−1 4.458 (0.026)
Constant −5.914 (0.182)

Notes: Estimates of the Logit model in (25). In the table, “se” stands for standard errors, in parenthesis, computed
using subsampling with 500 subsamples. Health, ht , is given by the CD4 count measured in hundreds of cells per mi-
croliter.

characteristics is drawn; health hit , ailments y1it−1, income y3it−1, out-of-pocket payments
y4it−1, survival bit , and current labor supply y2it are realized. The number of new treatments
is drawn as well as their characteristics; commercial treatments finish their life cycle follow-
ing the {s, s} rule. Clusters of treatments are formed according to the clustering rule c. Un-
der the empirical specification in Section 4, the aggregate state, za

t , includes the treatments re-
maining on the market Kt , the centroid for innovation ωt , the magnitude of previous innova-
tions κt , the previous share of the experimental treatment set−1, and the joint distribution of
consumer demographics (including previous consumption) Ht . The individual state is formed
by idiosyncratic preference shocks εit , and z̄it ; the latter consists of the aggregate state, de-
noted as za

t , together with a collection of individual-specific variables: health hit , labor supply
y2it , recent usage θJ+2,it−1, demographics ait , and productivity ηi. Individuals have rational ex-
pectations and zero measure in the population. They observe their current state and choose
j ∈ {0, 1, . . . , J + 1 + rit}. Aggregate choices at t determine market shares. The individual’s ex
ante value function in the modified decentralized problem is:

V (z̄it ) ≡ E

⎧⎨
⎩

∞∑
τ=t

J+1+rit∑
j=0

βτ−tde
jiτbiτ [uj(hiτ , yiτ ) + ε jiτ ]

∣∣∣∣∣∣z̄it

⎫⎬
⎭,(A.11)
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Table A.12
gross income, y3t

Variable γ (inc) se

ht 0.018 (0.001)
h2

t /103 −0.064 (0.007)
h3

t /107 1.138 (0.169)
h4

t /1010 −1.030 (0.204)
h5

t /1014 4.854 (1.304)
h6

t /1018 −11.270 (4.182)
h7

t /1020 0.101 (0.053)
Aget 0.482 (0.033)
Age2

t −0.006 (0.0004)
Black −5.534 (0.117)
Hispanic −4.167 (0.202)
Some college 2.497 (0.137)
College 5.812 (0.150)
More than college 8.203 (0.150)
LaborParticipationt , y2t 5.738 (0.070)
NoAilmentst , y1t 0.207 (0.025)
Constant −2.095 (0.790)

Notes: Estimates of (26). In the table, “se” stands for standard errors, in parenthesis, computed using subsampling
with 500 subsamples. Random effects regression of gross income on covariates. y3t is measured in real $U.S. indexed
to 2000. Health, ht , is given by the CD4 count measured in hundreds of cells per microliter.

where uj(hiτ , yiτ ) + ε jiτ ≡ Ujτ in Equation (28), and de
jiτ denotes the optimal choices at τ .

Because individuals in the decentralized economy do not take into account the consequences
of their actions (e.g., their consumption of experimental treatments or their adoption of treat-
ments with certain characteristics) on treatment development and hence on other individuals’
future payoffs, the aggregate process generates an externality.

A.3 Estimation Appendix.

A.3.1 Treatment characteristics. We estimate treatment characteristics using the larger
sample (visits 6–49) thereby using all data available on previous health, individual treatment
usage, and subsequent health and ailments. Estimation equations follow from (22) and (23):

ht+1 =
5∑

s=0

γ (health)
s hs

t +
∑
k∈Kt

d̃ktθ
(health)
k + dJ+1,tθ

(health)
et + εht,(A.12)

Pr [y1t = 0|·] =
⎛
⎝1 + exp

⎛
⎝ 5∑

s=0

γ (ail)
s hs

t +
∑
k∈Kt

d̃ktθ
(ail)
k + dJ+1,tθ

(ail)
et

⎞
⎠
⎞
⎠

−1

,(A.13)

where d̃kt is an indicator for the individual using treatment k ∈ Kt at period t. Along with es-
timates of treatment characteristics, (A.12) and (A.13) provide parameter vectors γ (health) and
γ (ail) that describe the health transition in (22) and the process for physical ailments in (23).

A.3.2 Clusters. In our empirical implementation, we assume that there are J clusters ev-
ery period. We implement the following version of the k-means algorithm. At every period t:

1. Select the treatments that are still available for new consumers at t. Denote this set of
treatments At .
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Table A.13
out-of-pocket expenditures, y4t

Variable γ (spend) se

ht −0.002 (0.0004)
h2

t /103 0.009 (0.002)
h3

t /107 −0.133 (0.033)
h4

t /1010 0.090 (0.031)
h5

t /1014 −0.266 (0.134)
h6

t /1018 0.279 (0.221)
Aget 0.037 (0.004)
Age2

t −0.0002 (0.00004)
Black −0.240 (0.013)
Hispanic −0.119 (0.015)
Some college 0.169 (0.016)
College 0.318 (0.018)
More than college 0.336 (0.019)
CommercialTreatmentt 0.429 (0.015)
ExperimentalTreatmentt 0.313 (0.018)
LaborParticipationt , y2t 0.105 (0.009)
NoAilmentst , y1t −0.122 (0.008)
Constant −1.459 (0.098)
σ o 0.862 (0.026)

Notes: Estimates of (27) using a Tobit Model for data censored at 0. In the table, “se” stands for standard errors, in
parenthesis, computed using subsampling with 500 subsamples. CommercialTreatmentt = dJ+2,t +∑J

k=1 dkt . Out-of-
pocket prescription expenditures y4t are measured in real $U.S. indexed to 2000. Health, ht , is given by the CD4 count
measured in hundreds of cells per microliter.

Table A.14
death, 1 − bt

Variable γ (live) se

ht −0.028 (0.001)
h2

t /103 0.079 (0.006)
h3

t /107 −1.104 (0.144)
h4

t /1010 0.704 (0.175)
h5

t /1014 −1.610 (0.811)
Aget −0.116 (0.020)
Age2

t 0.002 (0.0002)
Black −0.509 (0.065)
Hispanic 0.034 (0.074)
Some college 0.060 (0.062)
College −0.353 (0.062)
More than college −0.512 (0.065)
NoAilmentst , y1t −1.140 (0.051)
Constant 1.682 (0.465)

Notes: Estimates of the Logit model in (24). In the table, “se” stands for standard errors, in parenthesis, computed
using subsampling with 500 subsamples. Health, ht , is given by the CD4 count measured in hundreds of cells per mi-
croliter.

2. To keep comparability, rescale the characteristics of all treatments available for cluster-
ing at t by computing:

θ̃
(r)
k = θ

(r)
k

maxk∈At

∣∣∣θ (r)
k

∣∣∣ , for r = health, ail.(A.14)

Thus, by construction, θ̃ ∈ [−1, 1] × [−1, 1].
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Table A.16
distribution of number of new treatments, FN

lnμ lnα
Variable coef. est. se Variable coef. est. se

κt−1 φN
1 0.432 (0.072) Constant φN

3 −0.206 (0.046)
set−1 φN

2 6.177 (0.492) κt−1 φN
4 −1.019 (0.134)

Notes: Model is specified in (A.2). In the table, “coef.” stands for coefficient and “est.” stands for estimate; “se”
stands for standard errors, in parenthesis, computed using subsampling with 500 subsamples. κt−1 measures the mag-
nitude of previous innovations. E[Nt ] = μt−1 ≡ exp(φN

1 κt−1 + φN
2 set−1) and Var[Nt ] = μt−1(1 + αN

t−1μt−1).

Table A.17
within cluster share function

Variable γ (weight) se

AilmentsRank −0.427 (0.122)
AilmentsRank × HealthRank 0.074 (0.018)
HealthRank2 −0.029 (0.007)
AilmentsRank2 −0.019 (0.007)
ClusterSize −0.509 (0.046)
HealthRank × ClusterSize 0.046 (0.009)
AilmentsRank × ClusterSize 0.063 (0.009)
AilmentsRank × HealthRank × ClusterSize −0.007 (0.001)
New −0.352 (0.751)
New × ClusterSize 0.027 (0.678)
Constant 0.786 (0.114)

Notes: Parameters estimates from (A.9) and (A.10). In the table, “est.” stands for estimate; “se” stands for standard
errors, in parenthesis, computed using subsampling with 500 subsamples. AilmentsRank stands for the rank of the ail-
ments characteristic as compared to other treatments within the cluster; HealthRank is defined similarly. ClusterSize
is the number of treatments in the cluster. New indicates whether the treatment just entered the market.

3. Select the first J centroids using the scaled characteristics θ̃ of J randomly selected treat-
ments from At .

4. Allocate all remaining treatments k ∈ At to clusters sequentially. At each step, select for
allocation the treatment whose scaled characteristics θ̃k are closest to one of the existing
clusters. Assign treatment k to the closest cluster and update the centroid of the cluster.
Repeat this process until all treatments in At are assigned to a cluster.

5. Taken the centroids as given, reallocate all treatments to their closest centroid.
6. Calculate the value of the clustering rule c(Kt ) in (A.8) for the current allocation.
7. Repeat 200 times steps 3–6 using the scaled characteristics θ̃ of different groups of J ran-

domly selected treatments in At as initial centroids. The allocation with the lowest value
of c(Kt ) is chosen.36

In the empirical application, we set the number of clusters at J = 3. Table A.9 presents the
distribution of users (in our sample) per cluster, for various values of J.

A.3.3 Innovation. According to (17), the characteristics of new and experimental treat-
ments are displaced innovations about the centroid (current or previous), and depend on the
previous share of the experimental treatment and a draw from the distribution of innovation
shocks fν (ν). To estimate (17) and fν (ν), we use all periods in the MACS data with relevant
information on treatment consumed, health, and ailments, from 1986 to 2008. We observe 86
realized innovations from newly introduced commercial treatments and 22 periods where in-
dividuals used experimental treatments. However, consistent with our definition of commer-
cial treatments, we only estimate the characteristics of experimental treatments that have at

36 When simulating clusters for a given parameter vector in estimation, we only repeat the process 50 times.
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least 40 users. We do not impose that innovation vectors cannot be strictly negative; relative to
the centroid, inferior treatments with lower quality in both dimensions (health and ailments)
may be introduced.37

A.3.4 Utility parameters. We estimate the utility parameters in (28) using a GMM estima-
tor and moment conditions that equate the log odds ratio of current CCPs with a representa-
tion of the differences in conditional value functions in terms of utility parameters and future
CCPs, states, and choices (Hotz et al., 1994). Below we explain this part of the estimation pro-
cess in more detail.

Moment conditions. Our moment conditions appeal to well-known results following from
our assumption that the taste shocks ε jit are i.i.d. extreme value type I distributed (Hotz and
Miller, 1993). They rely on differences between the log odds ratio and an alternative represen-
tation of differences in conditional value functions (v j(z̄it ) − v0(z̄it )) in terms of future CCPs,
choices, states, and utility parameters. Recalling the definition of V (z̄it ) in (A.11), the condi-
tional value function of choosing alternative j at period t is:

v j(z̄it ) = E
{
uj(hit, yit ) + βV (z̄it+1)

∣∣z̄it,djit = 1
}
.(A.15)

Let pjit (z̄it ) be the probability that individual i chooses option j at time t conditional on his
state z̄it . Let ψ jit (z̄it ) be the expected value of the jth taste shock conditional on alternative
j being optimal, and let γ be the Euler constant. Since the joint distribution of εt is extreme
value type I:

ψ j(z̄it ) ≡ Eε

[
ε jit |z̄it,de

jit = 1
]

= γ − ln (pjit (z̄it )).(A.16)

Define Ej{·} as the expectation conditional on djit = 1. Dropping the individual subindex i
for simplicity, using (A.16), we can write the conditional value function in (A.15) in terms of
future utility flows induced by all available alternatives, weighted by the future probabilities
of those alternatives being chosen, and corrected by the fact that the alternative may not be
optimal. Notably, the weighted average of corrected flow payoffs of a given period must be
discounted by the probability of survival up to that period conditional on today’s state and
choice. Letting T ∗ be an arbitrary period with t < T ∗ ≤ T , the alternative representation of
the conditional value function is given by:

vjt(z̄t ) = Ej
{
uj (ht , yt ) |z̄t

}+ βEj
{
V (z̄t+1, εt+1) |z̄t

}

= Ej
{
uj (ht , yt ) |z̄t

}+ βEj

⎧⎨
⎩bt+1Eε

⎧⎨
⎩

J+1+rt+1∑
j′=0

de
j′t+1 [uj′ (ht+1, yt+1) + ψ j′ (z̄t+1)]

⎫⎬
⎭
∣∣∣∣∣∣ z̄t

⎫⎬
⎭

+β2Ej
{
bt+2V (z̄t+2, εt+2) |z̄t

}

= Ej
{
uj (ht , yt ) |z̄t

}+ βEj

⎧⎨
⎩bt+1

J+1+rt+1∑
j′=0

pj′t+1 (z̄t+1) , [uj′ (ht+1, yt+1) + ψ j′ (z̄t+1)]

∣∣∣∣∣∣ z̄t

⎫⎬
⎭

+β2Ej
{
bt+2V (z̄t+2, εt+2) |z̄t

}

= Ej
{
uj (ht , yt ) |z̄t

}+ βEj

⎧⎨
⎩bt+1

J+1+rt+1∑
j′=0

pj′t+1 (z̄t+1) , [uj′ (ht+1, yt+1) + ψ j′ (z̄t+1)]

∣∣∣∣∣∣ z̄t

⎫⎬
⎭

37 This is consistent with what we observe in the data, and theoretical reasons why this may happen have been pro-
vided in the literature (Miller, 1988).



innovation and diffusion of medical treatment 999

+β2Ej

⎧⎨
⎩bt+1bt+2

J+1+rt+2∑
j′=0

pj′t+2 (z̄t+2) , [uj′ (ht+2, yt+2) + ψ j′ (z̄t+2)]

∣∣∣∣∣∣ z̄t

⎫⎬
⎭

+β3Ej
{
bt+1bt+2V (z̄t+3, εt+3) |z̄t

}
= Ej

{
uj (ht , yt ) |z̄t

}

+
T ∗∑
τ=1

βτEj

⎧⎨
⎩
(

τ∏
r=1

Pr (bt+r = 1|ht+r)

)
,

J+1+rt+τ∑
j′=0

pj′t+τ (z̄t+τ ) , [uj′ (ht+τ , yt+τ ) + ψ j′ (z̄t+τ )]

∣∣∣∣∣∣ z̄t

⎫⎬
⎭

+βT ∗+1Ej

{(
T ∗+1∏
r=1

Pr (bt+r = 1|ht+r)

)
,V (z̄t+T ∗+1, εt+T ∗+1)

∣∣∣∣∣ z̄t

}
.(A.17)

Let w(z̄it ) be a vector of instruments orthogonal to the difference between the log odds ra-
tio and the alternative representation. Hence, we can form the following moment conditions:

E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(z̄it ) ⊗

⎡
⎢⎢⎢⎣

ln
(

p0it (z̄it )
p1it (z̄it )

)
+ v1it (z̄it ) − v0it (z̄it )

...

ln
(

p0it (z̄it )
pJ+1+rit ,it (z̄it )

)
+ vJ+1+rit ,it (z̄it ) − v0it (z̄it )

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0.(A.18)

Conditional choice probabilities. The probability that an individual chooses one of the J +
1 + rit alternatives in his choice set depends on the individual and aggregate elements of his
state. In estimation, we include ωt , κt and set−1 directly in the CCPs and characterize other
components of the aggregate state as follows: The set of available treatments {θk}k∈Kt is char-
acterized by the distribution of treatment characteristics of all clusters. We use the first two
moments of these distributions in estimation. The distribution of consumer characteristics Ht

is controlled for using a set of nonparametric moments denoted by H̃t .38 Let mjit be the mo-
ments describing the distribution of characteristics induced by alternative j for individual i
at period t, including the mean vector and the variance matrix. Effectively, mjit is heteroge-
neous across individuals only when j = J + 2, that is, when the individual decides to purchase
the same treatment, he consumed last period. Let mjitmjit denote a vector of interactions be-
tween the elements of mjit . Let x̃1

it and x̃2
it be subsets of the individual-specific components of

the state.39 Let ωtmjit denote a vector of interactions between the centroid and the elements
of mjit . Similarly, let mjit x̃2

it be a vector of interactions between the components of mjit and
individual-specific state components and let ωtmjit x̃2

it be defined in a similar fashion. Our flexi-
ble CCPs are given by:

pjit = exp (Ijit )∑J+1+rit
j′=0 exp (Ij′it )

,(A.19)

where

I0it ≡ 0,(A.20)

Ijit ≡ γJx̃1
it + β0mjt + β1mjtmjt + β2ωtmjt + β3mjt x̃2

it + β4ωtmjt x̃2
it

+β5mjtH̃t + β6κt + β7set−1, j = 1, . . . , J,(A.21)

38 We specify these moments as shares of people with different sets of characteristics.
39 x̃2

it includes hit−1, ait−1, racei, y2it , whereas x̃1
it includes a constant, ait−1, racei.
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IJ+1,it ≡ γJ+1x̃1
it + β0mJ+1,t + β1mJ+1,tmJ+1,t + β3mJ+1,t x̃2

it

+β5mJ+1,t H̃t + β6κt + β7set−1,(A.22)

IJ+2,it ≡ γJ+2x̃1
it + β0mJ+2,it + β1mJ+2,itmJ+2,it + β2ωtmJ+2,it + β3mJ+2,it x̃2

it

+β4ωtmJ+2,it x̃2
it + β5mJ+2,it H̃t + β6κt + β7set−1.(A.23)

Although the characteristics of the choice sets are nonstationary due to treatment entry and
exit, by interacting our time-varying regressors x̃2

it with the characteristics of the choice set for
individual i, mjit , we are able to control for the state of the world in our CCPs.40 This proce-
dure yields CCPs for any simulated world as long as our observed worlds cover the space of
possible worlds. Additionally, we include in the CCPs ancillary coefficients that are unrelated
to the state of technology, denoted by γ in (A.21) to (A.23), which capture stationary taste
differences between alternatives. Consistent with our assumptions regarding the flow utility in
Equation (28), we impose γ j = γJ for any j = 1, . . . , J.

Figure A.2 displays the mean predicted CCPs using (A.19) over time against the corre-
sponding share of the population who chose the alternative.41

Simulation. To form the sample analog of the moment condition in (A.18), we obtain a
simulated version of the conditional value function in (A.17) truncated at T ∗ for every ob-
servation {i, t} and alternative j ∈ {0, 1, . . . , J + 1 + rit}. We select T ∗ = 10 so that the prod-
uct βT ∗+1∏T ∗+1

r=1 Pr(bit+r = 1|hit+r) approaches 0, eliminating further differences in conditional
value functions beyond T ∗. Let S denote the number of simulated paths for each { j, i, t} and
let the superscript s indicate that a quantity is simulated. For individual i and alternative j at
period t, we write the simulated counterpart of the truncated value function as

v̄jit (z̄it) ≡ 1
S

S∑
s=1

{
uj (hit, ys

it) ,+
T ∗∑
τ=1

βτ

(
τ∏

r=1

Pr
(
bit+r = 1|hs

it+r

))

×
J+1+rt+τ∑

j′=0

ds
j′it+τ

[
uj′
(
hs

it+τ , ys
it+τ
)+ ψ j′

(
z̄s

it+τ
)
.
]⎫⎬⎭(A.24)

Each future path depends on the current individual state z̄it , and hence on the current aggre-
gate state za

t , and the current choice j. We first simulate as many aggregate paths starting at
t as there are individuals at period t. Letting I be the number of individuals in the sample,
this yields IT paths of technological innovation. Then, for each observation {i, t} and alterna-
tive j, we generate sequences of future choices and payoffs taking as given S artificial tech-
nological paths chosen at random from the set of I simulated technological paths that start
at date t.42 This simulation process maintains the assumption, needed for consistency of the
estimator, that the sample draws from the moment conditions—the contribution from each
observation—are independent from each other, and it prevents simulation errors in technol-
ogy paths from propagating across all observations.

40 Because some of the components of mJ+1t are linear functions of ωt−1 (see (17)), we avoid collinearity by not
including terms ωt mJ+1,t and ωt mJ+1,t x̃2

it in (A.22).
41 We also explore the fit of our CCP estimates by comparing the relative shares that clusters received in reality

against the predictions from our estimated CCPs. We ranked the three clusters at every period by the share they re-
ceived and compare this ranking against the ranking obtained from our estimated CCPs. Predicted ranks match ob-
served ranks in about 80% of the periods.

42 Notice that we could rely on Hotz et al. (1994) and set S = 1 and obtain consistency of our estimator. However,
we choose S = 20 after trying different values for robustness.
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Notes: Data from Institute of Medicine (1991), Gonsalves and Harrington (1992), and Summers and Kates (2004).
Amounts in real $U.S. indexed to 2000.

Figure A.1

nih hiv research budget

Simulation of the aggregate state. Taking as given the current aggregate state za
t , we create

as many simulated aggregate state paths {za,s
t+τ }T ∗

τ=1 as there are individuals at every t. In other
words, we repeat the algorithm below to generate I simulated aggregate paths for every pe-
riod t:

1. Let τ = 1.
2. Entry and exit of treatments. Simulate a number of new treatments at t + τ , Ns

t+τ , us-
ing the entry process in (A.2). If Ns

t+τ > 0, for each simulated new treatment, draw sim-
ulated characteristics using (17). Simulate the characteristics of the experimental treat-
ment using (17). Obtain κs

t+τ using (19) and (A.3). For all incumbent treatments, ap-
ply the exit rule {s, s} taking into account the extent to which it binds according to
(A.7). From the simulated set of treatments in Ks

t+τ that have not yet satisfied the s
exit rule, form clusters following the clustering rule in (A.8). Obtain the distribution of
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(a) No Treatment, j = 0 (b) Experimental, j = J+1 (c) Repeat, j = J+2

Notes:Average estimated conditional choice probability against the share of people choosing the alternative. Dashed
lines represent 95% confidence intervals around the mean predicted CCPs. Three periods of special relevance are
highlighted in the figure: two periods during which enrollment into the sample was undertaken and the period in
which treatments belonging to the HAART class were introduced.

Figure A.2

average ccps
[color figure can be viewed at wileyonlinelibrary.com]

characteristics of each cluster using (A.9) and (A.10). For τ > 1, compute the simulated
centroid ωs

t+τ using (16).
Demand. For all individuals i′ at t: If τ = 1, define hs

i′t+1 ≡ hi′t+1 and ds
i′t ≡ di′t ; otherwise,

simulate hs
i′t+τ using (22). Draw a simulated labor state ys

2i′t+τ using (25). Compute deter-
ministic transitions (e.g., age). Using z̄s

i′t+τ , and hence za,s
t+τ , and (A.19) to (A.23) compute

simulated CCPs ps
ji′t+τ (z̄s

i′t+τ ) for every alternative j ∈ {0, 1, . . . , J + 1 + rs
it+τ } and draw

a decision ds
i′t+τ . Obtain the simulated share of trial participation ss

e,t+τ and the nonpara-
metric representation of the simulated distribution of consumer characteristics H̃s

t+τ .
3. Cycle back. If τ = T ∗, end the loop. Otherwise, let τ = τ + 1 and go back to step 2.

Simulation of individual paths. For every observation {i, t} and every alternative j ∈
{0, 1, . . . , J + 1 + rit}, we generate S sequences of future states, choices, and outcomes
{z̄s

it+τ ,ds
it+τ , ys

it+τ }T ∗
τ=1 taking as given a subset of S simulated aggregate paths—that start at t—

chosen at random without replacement. We follow the steps below:

1. Let τ = 1.
2. Demand. Same as above but only for individual i. When j is not equal to the observed

choice for {i, t}, we also simulate health at the beginning of period t + 1. For this, we back
out the realized health residual using (A.12) and use (22) to simulate health hs

it+1 under
counterfactual choice j. Additionally, we compute the simulated one-period-ahead sur-
vival probability Pr(bit+r = 1|hs

it+r).
3. Outcomes. Only for individual i: Simulate ailments using (23) and the relevant distribu-

tion of treatment characteristics implied by the simulated choice ds
it+τ . Simulate income

using (26) and out-of-pocket prescription expenditures using (27).43

4. Cycle back. If τ = T ∗, end the loop. Otherwise, let τ = τ + 1 and go back to step 2.

43 Even though individuals know their idiosyncratic income shocks εm
it , we do not need to simulate these shocks as

they are i.i.d., have mean 0, and enter linearly in the flow utility, which results in them averaging out to 0 in the mo-
ment condition.
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When simulating a path following an alternative j that is not the observed choice for {i, t},
we obtain current-period simulated payoffs uj(hs

it, ys
it ) by simulating current income, out-of-

pocket expenditures, and ailments conditional on the counterfactual choice j at t.
Estimator. Let j = 0 be the base alternative, and let δit be an indicator of whether individual

i is in the data at period t. The simulated sample analog of the moment condition in (A.18) is

1∑
i

∑
t δit

I∑
i=1

T∑
t=1

δitw(z̄it ) ⊗

⎡
⎢⎢⎢⎣

ln
(

p0it (z̄it )
p1it (z̄it )

)
+ v̄1it (z̄it ) − v̄0it (z̄it )

...

ln
(

p0it (z̄it )
pJ+1+rit ,it (z̄it )

)
+ v̄J+1+rit ,it (z̄it ) − v̄0it (z̄it )

⎤
⎥⎥⎥⎦ = 0.(A.25)

Denote � as the M-dimensional vector of parameters of the utility function. Following
Hotz et al. (1994), we estimate � as the vector that minimizes the following objective func-
tion:

(
(IT )−1

I∑
i=1

T∑
t=1

δitw(z̄it ) ⊗ Ait (z̄it,�)

)′

Wn

(
(IT )−1

I∑
i=1

T∑
t=1

δitw(z̄it ) ⊗ Ait (z̄it,�)

)
,(A.26)

where

Ait (z̄it,�) ≡

⎡
⎢⎢⎢⎣

ln
(

p0it (z̄it )
p1it (z̄it )

)
+ v̄1it (z̄it ) − v̄0it (z̄it )

...

ln
(

p0it (z̄it )
pJ+2it (z̄it )

)
+ v̄J+2it (z̄it ) − v̄0it (z̄it )

⎤
⎥⎥⎥⎦.(A.27)

and Wn is a square weighting matrix. Using the linear structure of the utility function in (28),
we collect and factor terms to write the jth component of the vector Ait (z̄it,�) as the linear
form

ỹ jit − x̃′
jit�.(A.28)

Define Y as a vector with (J + 2)IT rows that stacks all ỹ jit , and X as a (J + 2)IT × M matrix
that stacks all x̃ jit . Define Z as the IT × R matrix whose columns contain the R instruments
orthogonal to the difference between the log odds ratio of current CCPs and the alternative
representation of the differences in conditional value functions.44 Thus,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹ1,1,1

ỹ1,1,2
...

ỹ1,I,T−1

ỹ1,I,T
...

ỹJ+2,1,1

ỹJ+2,1,2
...

ỹJ+2,I,T−1

ỹJ+2,I,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1,1,1,1 . . . x̃1,1,1,M

x̃1,1,2,1 . . . x̃1,1,2,M
...

...
x̃1,I,T−1,1 . . . x̃1,I,T−1,M

x̃1,I,T,1 . . . x̃1,I,T,M
...

...
x̃J+2,1,1,1 . . . x̃J+2,1,1,M

x̃J+2,1,2,1 . . . x̃J+2,1,2,M
...

...
x̃J+2,I,T−1,1 . . . x̃J+2,I,T−1,M

x̃J+2,I,T,1 . . . x̃J+2,I,T,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z =

⎡
⎢⎢⎢⎢⎢⎣

w(z̄11)1 . . . w(z̄11)R
w(z̄12)1 . . . w(z̄12)R

...
...

w(z̄IT )1 . . . w(z̄IT )R

⎤
⎥⎥⎥⎥⎥⎦.

(A.29)

44 Hence, Wn is a (J + 2)R-dimensional square matrix.
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Finally, let I[J+2] be a (J + 2)-dimensional identity matrix and define Z̃ ≡ I[J+2] ⊗ Z. Then we
can write the objective function in (A.26) as

(
(IT )−1Z̃′(Y − X�)

)′
Wn

(
(IT )−1Z̃′(Y − X�)

)
.(A.30)

Equation (A.30) is a linear arrangement, so we can obtain a closed-form solution for �̂ as the
optimal GMM estimator. It entails first and second stage estimators given by

�̂1S = (X ′Z̃Z̃′X
)−1(

X ′Z̃Z̃′Y
)
, �̂2S =

(
X ′Z̃Ŝ−1Z̃′X

)−1(
X ′Z̃Ŝ−1Z̃′Y

)
,(A.31)

where

Ŝ = 1
I∗ Z̃′DZ̃, I∗ = IT (J + 1) +

I∑
i=1

T∑
t=1

rit(A.32)

accounts for the fact that some individuals cannot repeat their previous consumption (for in-
stance, if the treatment was withdrawn), and D is the I(J + 2) square diagonal matrix with di-
agonal elements û2

jit = (ỹ jit − x̃′
jit�̂

1S)2. As instruments, we use initial health hit , lagged labor
state y2it−1, income fixed effect ηi, race/ethnicity, education, and age ait , the centroid ωt and
the lagged share of trial participation set−1, as well as interactions between these variables. The
variance–covariance matrix of the second-stage estimator is

V̂ 2S = I∗
(

X ′Z̃Ŝ−1Z̃′X
)−1

.(A.33)

A.3.5 Standard errors. The uncorrected standard errors for our utility parameters yield
from the variance-covariance matrix in (A.33). We obtain corrected standard errors using sub-
sampling taking as given the following objects obtained from the full sample: the definition of
treatments (i.e., what their components are, for instance, AZT or AZT + DDI) and the exit
thresholds {s, s} specified in Subsection A.8. We draw R = 500 subsamples containing a pro-
portion p̃ = 0.9 of the individuals in the sample drawn without replacement, and estimate all
parameters in the model using each subsample. This includes estimating treatment character-
istics, parameters governing transition and outcome processes, and simulating forward paths
of technology to obtain utility parameters. For any parameter γ , the subsampling standard er-
rors are obtained as

se(γ̂ ) ≈ se(γ̂r) ·√p̃,(A.34)

where γ̂r is the estimated value from the rth subsample, and se(γ̂r) is estimated as the standard
deviation of the R estimates γ̂r.

A.4 Results Appendix.

A.4.1 Estimates.

A.4.2 The likelihood of observed technological progress.

A.4.3 Eliminating the effect of repeat purchase. The evolution of technology, and ulti-
mately consumer welfare, is affected by demand externalities arising in the innovation pro-
cess. We measure the importance of these externalities by describing how the market would
evolve if consumers had less influence over the process of innovation, restricting the role of
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Notes: Model is specified in (A.2). This figure shows the empirical distribution of the number of new treatments and
the average of the predicted probabilities using the estimated parameters in Table A.16.

Figure A.3

distribution of number of new treatments

demand pull. In this counterfactual, we eliminate the effect of repeat purchase on innova-
tion. Recall that in the model, individuals who repeat purchase have full information regard-
ing treatment characteristics. We present results averaging over 500 simulated paths starting at
the first semester of 1991.

Since consumers dislike changing treatment, they face a trade-off between old and new
technologies, and are more likely to repeat purchase if prior treatment offers better charac-
teristics than current clusters. In this counterfactual, we study the evolution of treatment qual-
ity when the process of innovation remains responsive to demand but demand by repeat con-
sumers is not guided by their preferences, individual characteristics, or their knowledge of
the quality of the treatment they are consuming. Concretely, we assign individuals to alter-
natives in the choice set in the same proportions as the baseline (including the experimental
treatment and no treatment), but make repeat consumption of old technologies random. By
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Notes: One hundred simulated paths conditional on the state of the world in 1991 and 1996.

Figure A.4

distribution of technology paths: technology and treatment consumption

matching the unconditional shares of this counterfactual regime to the unconditional shares in
the baseline (the estimated model of demand-pull innovation in Section 4), we avoid spurious
effects on the process of innovation yielding from arbitrary aggregate shares (e.g., 1/G for a
choice set of size G). This regime neutralizes the dependence of the technological path on the
preferences and characteristics of repeat consumers without changing the nature of the law of
motion of available treatments.

Figure A.5 shows that in the counterfactual regime, the path of innovation is tilted toward
more effective treatments with greater side effects. In other words, eliminating the effects of
repeat consumption improves health and survival, but leads to more physical ailments. In-
formed repeat customers trade efficacy for fewer side effects despite the detrimental impact
on their survival.

A.4.4 Continuation values and smoothing. We obtain continuation values for every sub-
sidy value in Section 6 by implementing the following algorithm:

1. Create a collection, denoted by V , of 500 continuation value vectors computed for all t +
1 states. Each row in a value vector is an individual. Each value vector v ∈ V corresponds
to a t + 1 aggregate state za,v

t+1.
2. For each subsidy value n, we compute each individual’s current payoff and their future

state, as well as the implied t + 1 aggregate state za,n
t+1.

3. We match the vector of current payoff under subsidy n to the continuation value vector
v∗ ∈ V corresponding to the t + 1 aggregate state that is closest to the aggregate state in-
duced by subsidy n. In other words, we match subsidy n to the continuation value vector
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Notes: Average paths computed over 500 simulations that are conditional on the state of the world at 1991. The base-
line is the estimated model of demand-pull innovation in Section 4. The baseline solid lines in Figure A.5 are the av-
erages of the gray lines in Figure 10 and Figure A.4 in Appendix A.15.2. Individuals in the alternative regime are as-
signed alternatives using the unconditional shares from the baseline model as assignment probabilities.

Figure A.5

eliminating the effect of repeat purchase

v∗ that solves:

v∗ = arg min
v∈V

||za,n
t+1 − za,v

t+1||.(A.35)

We use a measure of Euclidean distance that yields from discretizing the aggregate states
za,n

t+1 and za,v
t+1 into vectors with 196 components. We scale each component of the dis-

cretized aggregate state vectors to be between 0 and 1 by dividing over its largest value.
4. We repeat 1,000 times steps 2 and 3 for every subsidy n and average over repetitions.

Our method of matching continuation values generates noise around the mapping from
subsidy values into average consumer lifetime utility. (See the point-dash line in Figure 11.)
We use local polynomials to smooth the mapping in an interval starting at the decentralized
share set .

references

Acemoglu, D., and J. Linn, “Market Size in Innovation: Theory and Evidence from the Pharmaceutical
Industry,” Quarterly Journal of Economics 119 (2004), 1049–90.

Aguirregabiria, V., and A. Magesan, “Solution and Estimation of Dynamic Discrete Choice Structural
Models Using Euler Equations Markets,” Working Paper, 2018.



1008 hamilton et al.

Alsan, M., and M. Wanamaker, “Tuskegee and the Health of Black Men,” Quarterly Journal of Eco-
nomics 133 (2018), 407–55.
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