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Abstract

This paper analyzes the identification of flow payoffs and counterfactual choice probabilities (CCPs)

in single-agent dynamic discrete choice models. We develop new results on non-stationary models

where the time horizon for the agent extends beyond the length of the data (short panels). We

show that counterfactual CCPs and policy functions in short panels are identified when induced by

temporary policy changes affecting payoffs, even though the utility flows are not. Counterfactual CCPs

induced by innovations to state transitions are generally not identified unless the model exhibits single

action finite dependence (which includes terminal or renewal states as special cases), and the payoffs of

those actions establishing single action finite dependence (the renewal action for example) are known.

1 Introduction

Dynamic discrete choice models are increasingly used to explain panel data in labor economics, industrial

organization and marketing.1 It is widely recognized that interpreting the predictions of policy innovations

from structural models critically depends on the assumptions used to identify the model. This paper

∗Corresponding author: Robert Miller, Tepper Business School, Carnegie Mellon University, Pittsburgh, Pa, 15217;

phone, 412-268-3701;email, ramiller@cmu.edu.
1For surveys of this literature see Eckstein and Wolpin (1989), Pakes (1994), Rust (1994), Miller (1997), Aguirregabiria

and Mira (2010), Keane, Todd and Wolpin (2011) and Arcidiacono and Ellickson (2011).
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extends previous work on identifying dynamic discrete choice models of individual optimization problems

off panel data. We focus on nonstationary data generating processes where the time horizon of the

agent extends beyond the length of the data. For convenience we refer to data of this form as short.

Short panels contrast with long ones: data generated from stationary processes, or panel data generated

by nonstationary data generating processes that sample every event with strictly positive probability in

a finite horizon model. We analyze the identification of policy functions, structural parameters, and

counterfactual policies, highlighting results for short panels and contrasting their differences with long

panels that have received much more attention from the literature.

Short panels are common: many panel data sets do not cover the full lifetime of the sampled firm,

individual, or product. Nonstationarities arise naturally: in the human life cycle through aging, and the

general equilibrium effects of evolving demographics; in industries because of innovation and growth; and

in marketing through the diffusion of new products and over the product life cycle. These features pose

serious challenges to inference. Conventional wisdom holds that accommodating nonstationarities within

dynamic structures complicates inference, explaining why most applied work in this area assumes the data

generating process is stationary, or impose other strong restrictions in estimation.

Our analysis draws extensively upon previously published work: Rust’s (1987) conditional indepen-

dence assumption limiting the role of unobserved heterogeneity; Hotz and Millers’ (1993) inversion the-

orem, relating conditional choice probabilities to differences in continuation values, that we show below

identifies the policy function when the distribution of unobserved heterogeneity is known; the observational

equivalence Rust (1994) highlighting links between payoffs occurring at different times; the identification

theorem of Magnac and Thesmar (2001) for primitives in a finite horizon model; Aguirregabiria’s (2005)

extension to infinite horizon stationary models; and the representation of utility payoffs in Arcidiacono

and Miller (2011). Our results on counterfactuals extends the prior work of Aguirregabiria (2005, 2010)

and Norets and Tang (2014), who show that in long panels counterfactuals only affecting flow payoffs do

not depend on the normalization selected, but that counterfactuals affecting the transitions of the state

variables generally depend on which flow payoff is normalized.

Following the papers cited above, and many other besides, we assume throughout that the unobserved

variables are independently distributed over time, that the distribution of the unobserved variables is
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known, as is the discount factor. However the earliest work on estimating dynamic discrete choice models

(Miller,1984; Pakes, 1986; Wolpin, 1984) included unobserved heterogeneity, and the identification of the

distribution of unobserved variables has been taken up in several recent studies (Kasahara and Shimotsu,

2009; Aguirregabiria, 2010; Hu and Shum, 2012; Norets and Tang, 2014). A literature on the identifi-

cation and estimation of multi-agent models has also emerged (Aguirregabiria and Mira, 2007; Bajari,

Benkard and Levin, 2007; Pakes, Ostrovsky and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008;

Bajari, Chernozhukov, Hong, and Nekepelov, 2009; Aguirregabiria and Suzuki, 2014; Aguirregabiria and

Mira, 2015). Several studies explore within specialized frameworks tradeoffs between imposing exclusion

restrictions and functional forms assumptions, or adding information about continuous choices, in order to

identify the discount factor, features of the disturbance distribution and counterfactual policies (Heckman

and Navarro, 2007; Aguirregabiria, 2010; Blevin, 2014; Norets and Tang, 2014; Bajari, Chu, Nekipelov,

and Park, 2016). Chou’s (2016) recent work within a binary choice context on identifying counterfactual

predictions without normalizing per period payoffs, is close to ours, because in considering the tradeoffs

described above, Chou also distinguishes between short and long panels. But without further restrictions

on the parameter space or information over and above the choices and state variables, that is beyond the

assumptions made in this paper, the primitives of these models are underidentified.

The main differences emerging from this study between identification in long and short panels can be

summarized as follows. In contrast to long panels, knowing the flow payoff for one of the actions over

the course of the sample period is not generally enough to restore identification of the model primitives

in short panels. Loosely speaking this is because behavior observed during a short panel is not solely

attributable to payoffs that occur during the panel but partially reflects decision making and payoffs that

occur after the panel ends.

Predictions about the future can be made from long panels, but not in short ones. This difference

highlights the assumption of studies that assume long panels embody the future within the past through

an ergodicity assumption, whereas short panels formally accommodate nonstationary features of the data

generating process. If researchers do not impose functional form assumptions and exclusion restrictions

on future choice sets, payoffs and state transitions pertaining to parts of the population excluded from

the data generating process, counterfactuals for models estimated off short panels must be restricted to

3



behavior that would have been observed if the counterfactual policies had been implemented during the

time span of the panel.

We find that even if none of the payoffs to any the actions are known, the effects of counterfactual

temporary policy changes are identified in short panels if the policy change only affects the flow payoffs, a

result that mimics the long panel analogue. However, without making further assumptions on the payoffs,

and in contrast to long panels, counterfactual choice probabilities for temporary policy changes affecting

the state transitions are not generally identified off short panels, even if the flow value for one of the

choices is known for the entire history.

There is, however, one important specialization, single action finite dependence, that partially restores

results available for long panels to short panels. Single action finite dependence, defined formally in

Section 3.3, arises when upon taking a particular action for a certain number of periods following an

initial choice, the distribution of states no longer depends on that initial choice. This condition is stronger

than finite dependence, but weaker than terminating or renewal actions, common assumptions in empirical

applications of dynamic discrete choice. If the model exhibits single action finite dependence and the flow

payoff for that particular action is known over the course of the sample period, the identification of (some

of) the primitives (pertaining to the periods sampled in the short panel), and temporary counterfactual

changes to state transitions, are restored.

Nevertheless useful policy advice can be gleaned from short panels without making additional assump-

tions beyond those necessary for identification in long panels, even if the single action finite dependence

property does not hold. For example many panels on early lifecycle behavior do not sample many periods

beyond the phase of interest (such as early child development and educational choices), and our results

show that predictions about subsidy and tax policy can be inferred from such panels without making

strong assumptions about payoffs that occur after that phase of the lifecycle is over.

The next section lays out the decision framework. Section 3 derives the observationally equivalent sets

of primitives, and analyzes the identification of the flow payoffs. Section 4 turns to the identification of

the conditional choice probabilities (CCPs) under counterfactual regimes. Section 5 provides an example

illustrating the main results of our analysis, while Section 6 concludes.
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2 Framework

The following notation and assumptions define the class of dynamic discrete choice Markov models we

consider.

Assumption 1 Time is discrete, and the choice set is finite:

1A Let T ∈ {1, 2, . . .} with T ≤ ∞ denote the horizon of the optimization problem and t ∈

{1, . . . , T} denote the time period.

1B Each period the individual chooses amongst J mutually exclusive actions. Let dt ≡ (d1t, . . . , dJt)

where djt = 1 if action j ∈ {1, . . . , J} is taken at time t and djt = 0 if action j is not taken at

t. Thus djt ∈ {0, 1} with
∑J
j=1 djt = 1 for all j ∈ {1, . . . , J} and t ∈ {1, . . . , T} .

Assumption 2 Denote the realization of the state at t by (xt, εt). We assume εt is a J dimensional vector

of disturbances with continuous support, that xt has finite support, and following Rust (1987), that

the conditional independence assumption is satisfied:

2A xt ∈ {1, . . . , X} for some finite positive integer X for each t ∈ {1, . . . , T}.

2B εt ≡ (ε1t, . . . , εJt) where εjt ∈ < for all j ∈ {1, . . . , J} and t ∈ {1, . . . , T} .

2C The joint mixed density function for the state in period t+ 1 conditional on (xt, εt), denoted by

gt,j,x,ε (xt+1, εt+1 |xt, εt ), satisfies the conditional independence assumption:

gt,j,x,ε (xt+1, εt+1 |xt, εt ) = gt (εt|xt) fjt(xt+1|xt)

where gt (εt|xt) is a conditional probability density function for the disturbances, and fjt(xt+1|xt)

is the transition probability of xt+1 occurring in period t+ 1 when action j is taken at period

t and the state at t is xt.

Assumption 3 The preferences of the optimizing agent are defined over states and actions by a utility

function that is both additively separable over time, and between the contemporaneous disturbance

and the Markovian state variables:

3A Denote the discount factor by β ∈ (0, 1) and the current payoff from taking action j at t given

(xt, εt) by ujt(xt)+ εjt. To ensure a transversality condition is satisfied, we assume {ujt(x)}Tt=1
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is a bounded sequence for each (j, x) ∈ {1, . . . , J} × {1, . . . , X}, and so is:2

{∫
max {|ε1t| , . . . , |εJt|} gt (εt|xt) dεt

}T
t=1

3B At the beginning of each period t ∈ {1, . . . , T} the agent observes the realization (xt, εt) chooses

dt to sequentially maximize the discounted sum of payoffs:

E

{∑T

τ=t

∑J

j=1
βτ−1djτ [ujτ (xτ ) + εjτ ] |xt, εt

}
(1)

where at each period t the expectation is taken over future realized values xt+1, . . . , xT and

εt+1, . . . , εT conditional on (xt, εt).

For comparison purposes, we nest both the stationary infinite horizon model, defined by setting T =∞,

ujt(xt) = uj(xt) and fjt(xt+1|xt) = fj(xt+1|xt), and the finite horizon model in which T <∞. Our main

focus is, however, on models where stationarity is not assumed and the horizon is infinite, or at least

extends beyond the length of the data set, which is the case for many panels in labor economics.

Given the assumptions above, an optimal decision rule at t exists, which we now define as dot (xt, εt),

with jth element dojt(xt, εt). The conditional choice probability (CCP) of choosing j at time t conditional

on xt is found by integrating dojt(xt, εt) over εt:

pjt(xt) ≡
∫
dojt (xt, εt) gt (εt|xt) dεt (2)

We define pt(xt) ≡ (p1t(xt), . . . , pJt(xt)) as the CCP vector. Denote the ex-ante value function in period

t by:

Vt(xt) ≡ E
{∑T

τ=t

∑J

j=1
βτ−tdojτ (xτ , ετ ) (ujτ (xτ ) + εjτ )

}
Thus Vt(xt) is the discounted sum of expected future payoffs just before εt is revealed and conditional on

behaving according to the optimal decision rule. Let vjt(xt) denote the choice-specific conditional value

function, the flow payoff of action j without εjt plus the expected future utility conditional on following

the optimal decision rule from period t+ 1 onwards:

vjt(xt) ≡ ujt(xt) + β
∑X

xt+1=1
Vt+1(xt+1)fjt (xt+1|xt) (3)

2This regularity condition ensures that the value of the optimizer’s problem is finite and hence well defined, but plays no

further role in the analysis.
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Also define ψjt (x) ≡ Vt(x)− vjt(x). Since the value of committing to action j before seeing εt is vjt(x) +

E [εjt |x ], the expected loss from pre-committing to j versus waiting until εt is observed and only then

making an optimal choice, Vt(xt), is ψjt (x) + E [εjt |x ]. Denoting the indicator function by 1 {·}, the

policy function can be expressed as:

dojt (xt, εt) =
∏J

k=1
1 {εkt − εjt ≤ vjt(x)− vkt(x)} =

∏J

k=1
1 {εkt − εjt ≤ ψkt (x)− ψjt (x)} (4)

3 Identifying the Primitives

The optimization model is fully characterized by the time horizon, the utility flows, the discount factor,

the transition matrix of the observed state variables, and the distribution of the unobserved variables,3

summarized with the notation (T, β, f, g, u) . The data comprise observations for a real or synthetic panel

on the observed part of the state variable, xt, and decision outcomes, dt. In our analysis, let S ≤ T denote

the last date for which data is available (for a real or synthetic cohort). Following most of the empirical

work in this area we consider identification when (T, β, f, g) are assumed to be known.4

3.1 Observational equivalence

Proposition 1 of Hotz and Miller (1993) and Lemma 1 of Arcidiacono and Miller (2011) together imply

that ψjt (x) is identified off the CCPs if g is known. That is for each (x, j, t) a mapping denoted by

Ψjt (p, x) is identified off G with the property that ψjt (x) = Ψjt [pt (x) , x]. For example if gt (εt|x) does

not depend on x, then ψjt (x) only depends on x through pt(x); further specializing, it is well known that

if gt (εt|xt) is a standard Type 1 Extreme Value then ψjt (x) = − ln [pjt (x)]. Thus the policy functions are

also identified from (4); similarly the counterfactual policy functions are identified if the counterfactual

3Often the distribution of unobserved variables is assumed to be extreme value for tractability. However, Arcidiacono

and Miller (2011) showed how generalized extreme value distributions can easily be accommodated within a CCP estimation

framework, and recently Chiong, Galichon, and Shum (2016) have proposed simple estimators for a broad range of error

distributions.
4There are exceptions; for example Miller (1984) and Miller and Sanders (1997) estimate the discount rate β. Alternatively

if the optimizing agents are firms, or individuals with exponential utility (CARA), the estimation equations depend on an

(observed) market interest rate, rather than a preference parameter; see Gayle, Golan and Miller (2015) or Khorunzhina and

Miller (2017) for examples of the latter case.
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CCPs are identified and the counterfactual distribution of the disturbances is known.

However it seems almost common knowledge that u is only identified relative to one choice per period

for each state. For example Rust (1994, Lemma 3.2 page 3127) showed that the solution to a stationary

infinite horizon discrete choice problems is invariant to a broad class of utility transformations substituting

between current and future payoffs. Thus u is not point identified. But to the best of our knowledge there

is no formalism fully characterizing set identification given (T, β, f, g).

The following notation is used to derive the identified set of observationally equivalent primitives in

the absence of any further information about payoffs. For each (x, t) let l (x, t) ∈ {1, . . . , J} denote

any arbitrarily defined normalizing action and ct (x) ∈ < its associated benchmark flow utility, meaning

u∗l(x,t),t(x) ≡ ct (x). Assume {ct (x)}Tt=1 is bounded for each x ∈ {1, . . . , X}. Let κ∗τ (xτ+1|xt, j) denote the

probability distribution of xτ+1, given a state of xt taking action j at t, and then repeatedly taking the

normalized action from period t+ 1 through to period τ . Formally:

κ∗τ (xτ+1|xt, j) ≡


fjt(xt+1|xt) for τ = t∑X
x=1 fl(x,τ),τ (xτ+1|x)κ∗τ−1(x|xt, j) for τ = t+ 1, . . . , T

(5)

To derive the observationally equivalent result, we exploit a consequence of Theorem 1 of Arcidiacono and

Miller (2011), that vjt(x) may be expressed as:

vjt(xt) = ujt(xt) +
∑T

τ=t+1

∑X

x=1
βτ−t

[
ul(x,τ),τ (x) + ψl(x,τ),τ (x)

]
κ∗τ−1(x|xt, j) (6)

For a given (T, β, f, g) Theorem 1 exhibits all the observationally equivalent dynamic optimization prob-

lems to (T, β, f, g, u), which we denote by (T, β, f, g, u∗).

Theorem 1 For each R ∈ {1, 2, . . .}, define for all x ∈ {1, . . . , X}, j ∈ {1, . . . , J} and t ∈ {1, . . . , R}:

u∗jR(x) ≡ ujR(x) + cR (x)− ul(x,R),R(x) (7)

u∗jt(x) ≡ ujt(x) + ct (x)− ul(x,t),t(x) (8)

+ lim
R→T

{
R∑

τ=t+1

X∑
x′=1

βτ−t
[
cτ (x′)− ul(x′,τ),τ (x′)

] [
κ∗τ−1(x′|xt, l(x, t))− κ∗τ−1(x′|xt, j)

]}

The model defined by (7) and (8), denoted by (T, β, f, g, u∗), is observationally equivalent to (T, β, f, g, u) .

Conversely suppose (T, β, f, g, u∗) is observationally equivalent to (T, β, f, g, u). For each date and state

select any action l (x, t) ∈ {1, . . . , J} with payoff u∗l(x,t),t(x) ≡ ct (x) ∈ <, where {ct (x)}Tt=1 is bounded for

each x ∈ {1, . . . , X}. Then (7) and (8) hold for all (t, x, j).

8



Previous work on identification focused on two cases, when the horizon of the underlying optimization

problem is finite, and when it is stationary, simplifying the statement of the theorem. When T < ∞ we

set R = T in (7) and (8), as well as dropping the limit operator in (8). In stationary environments (8)

has the following matrix representation.

Corollary 2 Suppose ujt(x) = uj(x) and let uj ≡ (uj(1), . . . , uj(X))
′
. Similarly suppose fjt(xt+1|xt) =

fj(xt+1|xt) for all t ∈ {1, 2, . . .}. Denote by l (x) the normalizing action for that state, with true payoff vec-

tor ul =
(
ul(1)(1), . . . , ul(X)(X)

)′
, and assume c (x) ≡ (c(1), . . . , c(X))

′
is bounded for each x ∈ {1, 2, . . .}.

Then (8) reduces to:

u∗j = uj + [I − βFj ] [I − βFl]−1 (c− ul) (9)

where u∗j ≡
(
u∗j (1), . . . , u∗j (X)

)′
, the X dimensional identity matrix is denoted by I, and:

Fj ≡


fj(1|1) . . . fj(X|1)

...
. . .

...

fj(1|X) . . . fj(X|X)

 , Fl ≡


fl(1)(1|1) . . . fl(1)(X|1)

...
. . .

...

fl(X)(1|X) . . . fl(X)(X|X)


A common normalization is to let l (x, τ) = 1 and ct (x) = 0 for all (t, x), normalizing the payoff from

the first choice to zero by defining u∗1t(x) ≡ 0, and interpreting the payoffs for other actions as net of, or

relative to, the current payoff for the first choice. The theorem shows that with the important exception

of the static model (when T = 1), this interpretation is grossly misleading, if not false. For example if

1 < T <∞ then (7) and (8) simplify to:

u∗jT (x)− u1T (x) = ujT (x)

u∗jt(x)− u1t(x) = ujt(x)−
T∑

τ=t+1

X∑
xτ=1

βτ−tu1τ (xτ ) [κτ−1(xτ |xt, 1)− κτ−1(xτ |xt, j)]

where κτ (xτ+1|xt, j) is defined by setting fl(x,τ),τ (xτ+1|x) = f1τ (xτ+1|x) in (5). Note that u∗jt(x)−u1t(x) 6=

ujt(x) for all j ∈ {2, . . . , J} and t ∈ {1, . . . , T − 1}, and depends on the true unknown value of the u1τ (xτ )

payoffs, rendering the interpretation of u∗jt(x) problematic.

3.2 Identifying the primitives off long panels

We now assume that one of the payoffs is known for every state and time. Without loss of generality and

to simplify the notation we reorder the actions so that the known payoff corresponds to the first action.
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While the reordering of actions might be time and state dependent, this does not affect the generality of

the argument, and is notationally less burdensome than retaining the original ordering of actions. In this

case (6) simplifies to:

vjt(xt) = ujt(xt) +

R∑
τ=t+1

X∑
xτ=1

βτ−t [u1τ (xτ ) + ψ1τ (xτ )]κτ−1(xτ |xt, j) (10)

Manipulating (10) and using the definition of ψjt(x) we obtain a set of necessary and sufficient conditions

for identifying u when (T, β, f, g) is known.

Theorem 3 For all j, t, and x:

ujt(x) = u1t(x) + ψ1t(x)− ψjt(x) (11)

+

T∑
τ=t+1

X∑
xτ=1

βτ−t [u1τ (xτ ) + ψ1t(xτ )] [κτ−1(xτ |x, 1)− κτ−1(xτ |x, j)]

For stationary processes, define the X × 1 column vector Ψj ≡ [ψj(1) . . . ψj(X)]
′
. Then all j:

uj = Ψj −Ψ1 − u1 + β (F1 − Fj) [I − βF1]
−1

(Ψ1 + u1) (12)

Magnac and Thesmar (2002, Theorem 2 and Corollary 3 on pages 807 and 808) establish identification

of the flow payoff for T = 2 finite; Equation (12) is almost identical to Aguirregabiria (2005, Proposition 1

on pages 395 and 396) who identifies the structural parameters up to a particular normalization in the sta-

tionary settings; Norets and Tang (2014, Lemma 1 on page 1234) characterize the binary choice stationary

environment. This theorem unifies their previous results and provides a springboard for contrasting the

results for short panels.

Everything on the right hand side of both (11) and (12) is known; since there are as many equations

as unknowns, the system is exactly identified. These equations therefore yield asymptotically efficient

estimators of the unrestricted utility flows. They are defined by substituting sample analogues for the

conditional choice probabilities into the mappings that represent the utility flows; they are efficient because

the mapping of the conditional choice probabilities on to the current utility flows is the one to one, and the

relative frequencies observed in the data are the maximum estimates of the conditional choice probabilities.

Asymptotic precision can only be increased by exploiting information outside the data set about true

restrictions on the utility flows; false restrictions, such as adopting convenient functional forms for the

payoffs, typically create misspecifications.
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3.3 Single action finite dependence and short panels

Next we consider cases where the sampling period, S, falls short of the time horizon T . In one special-

ization some of the primitives can be identified off short panels without resorting to further restrictions

on the payoffs. This happens when the probability transitions fjt(xt+1|xt) exhibit a special form of finite

dependence, called single action finite dependence, and if the current payoff associated with that particular

action is known. Formally, single action ρ-dependence holds for action one (the choice for which payoffs

are observed) if for some t < T − ρ and all j:

κρ−1(xt+ρ|xt, 1) = κρ−1(xt+ρ|xt, j) (13)

More specialized than finite dependence (Arcidiacono and Miller 2011, 2015), single action finite depen-

dence nevertheless encompasses many applications; it includes terminal choices that end the optimization

problem or prevent any future decisionmaking; irreversible sterilization against future fertility, (Hotz and

Miller, 1993), firm exit from an industry (Aguirregabiria and Mira, 2007; Pakes, Ostrovsky, and Berry,

2007) and retirement (Gayle, Golan and Miller, 2015) are examples. Single action finite dependence

also includes renewal choices that resets the state next period to a value which is (deterministically or

stochastically) independent of the current state. Turnover and job matching (Miller, 1984), or replacing

a bus engine (Rust, 1987), are illustrative of renewal actions. Multiperiod renewal, such as Altug and

Miller (1998), where repeatedly taking an action for a finite number of periods obliterates the effects of

all previous actions, is yet another example of single action finite dependence.5 Note however, the primi-

tives in these applications are only identified if the payoff to the single action is actually known, not just

normalized to some notationally convenient arbitrary value.

Appealing to Corollary 4 it now follows that for all t < S − ρ:

ujt(xt) = u1t(x) + ψ1t(x)− ψjt(x)

+

t+ρ∑
τ=t+1

X∑
xτ=1

βτ−t [u1τ (xτ ) + ψ1t(xτ )] [κτ−1(xτ |x, 1)− κτ−1(xτ |x, j)]

Intuitively κτ−1(xτ |xt, 1) and κτ−1(xτ |xt, j), the sequence of state probabilities from following the two

paths (1, 1, 1, . . .) and (j, 1, 1, . . .) respectively, merge after ρ periods, obliterating terms in (11) that occur

5Similarly in Gayle and Miller (2006) and Khorunzhina and Miller (2017) single action finite dependence applies because

older offspring do no not directly affect the current birth choices of their mother.

11



after t + ρ. Thus if the payoffs for the choices that establish single action finite dependence are known,

then the primitives up until period S − ρ are identified. Formally if (13) holds and u1t(xt) is known for

all t ≤ S, then ujt(xt) is identified for all t ≤ S − ρ.

3.4 Lack of identification off nonstationary short panels

Since choices and state transitions are not observed after period S, the corresponding conditional choice

probabilities and state transition matrices are not identified beyond that period either. Rather than

express ujt(x) relative to the known payoff for first choice for the full horizon as in (11) , we express

ujt relative to the known u1t until period S and then use the value function at S + 1. This yields an

expression for ujt(xt) that provides the basis for the following corollary, which illuminates the extent of

underidentification.

Corollary 4 For all j, t, and x:

ujt(x) = u1t(x) + ψ1t(x)− ψjt(x) +

S∑
τ=t+1

X∑
xτ=1

βτ−t [u1τ (xτ ) + ψ1t(xτ )] [κτ−1(xτ |x, 1)− κτ−1(xτ |x, j)]

+βS−tVS+1(xS+1)] [κ(xS+1|x, 1)− κ(xS+1|x, j)] (14)

The last expression in (14) gives the underidentification result. Since the choice probabilities and state

transition matrices are identified from the data up to S, and ujt(xt) is a linear mapping of VS+1(x),

the utility flows would be exactly identified if VS+1(x) was known. However VS+1(x) is endogenous and

depends on CCPs that occur after the sample ends. In general the primitives are not identified off a short

panel without imposing X further restrictions.

4 Identifying the Effects of Policy Innovations

An important rationale for estimating structural models is their policy invariance; they yield robust

predictions about the effects of changes in the primitives on equilibrium in different regimes. Aguirregabiria

(2005, 2010) and Norets and Tang (2014) established two key results for stationary environments where

there are no aggregate shocks: the CCPs for counterfactual regimes involving only payoff innovations are

identified from the data generating process for the current regime, but to predict the effects of changing
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a state transition it is also necessary to identify the primitives, not just the observationally equivalent set

of primitives. This section investigates the extension of their results to short panels.

Denote the true payoffs in the sampled regime by ujt(x), the true payoffs in the counterfactual regime

by ũjt(x), and a payoff innovation by ∆jt(x) ≡ ũjt(x) − ujt(x). Let u∗jt(x) denote any normalization

that is observationally equivalent to ujt(x) in the current regime, and ũ∗jt(x) any normalization that

is observationally equivalent to u∗jt(x) in the counterfactual regime. Similarly, let f̃jt(x
′|x) denote the

one period transition probability for x′ at t + 1 conditional on (x, j, t) in the counterfactual regime.

Thus transition innovations are denoted by Λjt(x
′|x) ≡ f̃jt(x

′|x) − fjt(x′|x), where fjt(x
′|x) is the ob-

served transition for the sampled regime. Since fjt(x
′|x) and f̃jt(x

′|x) are both probability transitions,

−fjt(x′|x) ≤ Λjt(x
′|x) ≤ 1 − fjt(x′|x) for all (j, t, x) and

∑
x′ Λjt(x

′|x) = 0 for all (t, x). Finally let the

vector functions d̃ot (x, εt) and p̃t (x) respectively denote the optimal decision rule and the CCP associated

with (x, t) and define:

ψ̃jt(x) ≡ Ψ [p̃t (x) , x] = Ṽt(x)− ṽjt(x)

where Ṽt(x) denotes the exante value function associated with the counterfactual regime, and ṽjt(x) the

conditional value function for the jth action.

We limit our analysis to temporary policy innovations that expire before the sample ends at S. Even if

VS(x) is identified from restrictions placed on the functional form of ut(x), and even if the policy changes

are perfectly foreseen right until the end of the horizon at T , this is not sufficient to recover pt(x) and

hence ut(x) for t > S. Since the the primitives for the agent are not identified off short panels, the

solution to the counterfactual regime cannot be computed and therefore p̃t (x) is not identified for any t

(either before or after S). This contrasts with stationary environments, where forecasting the future is

resolved by fiat, since current utilities estimated in periods before T are identical to those which nobody

has observed; whether stationarity is a reasonable assumption depends on the application.

4.1 Counterfactual policies that affect payoffs

The starting point for investigating temporary payoff innovations is to note that by construction p̃S+1 (x) =

pS+1 (x). Solving the backwards recursion optimization problem we thus obtain the CCPs for the coun-

terfactual regime. Theorem 5 shows that if the CCPs for the current regime cover the periods during
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which payoffs could have been changed, then the counterfactual CCPs can be computed.6

Theorem 5 Given any temporary payoff innovation in which ∆jt(x) = 0 for all t > S then:

p̃jS (x) =

∫ J∏
k=1

1 {εkS − εjS + ∆kS(x)−∆jS(x) ≤ ψkS(x)− ψjS(x)} g (εS |x ) dεS

For all t < S the CCPs for the counterfactual regime can be recursively expressed as:

p̃jt (x) =

∫ J∏
k=1

1
{
εkt − εjt ≤ ψ̃jt(x)− ψ̃kt(x)

}
g (εt |x ) dεt

where ψ̃jt(x) ≡ Ψjt [p̃t (x) , x] and:

ψ̃jt(x)− ψ̃kt(x) = ψjt(x)− ψkt(x) + ∆jt(x)−∆kt(x)

+

T∑
τ=t+1

X∑
xτ=1

βτ−t
[
∆1τ (xτ ) + ψ̃1τ (xτ )− ψ1τ (xτ )

]
[κτ−1(xτ |x, j)− κτ−1(xτ |x, k)]

4.2 Counterfactual policies that affect state transitions

Identifying counterfactual CCPs that result from changes in the state transitions requires more informa-

tion. From (4) and (10):

p̃jt (x) =

∫ J∏
k=1

1


εkt − εjt + ukt(x)− ujt(x)

≤
T∑

τ=t+1

X∑
xτ=1

βτ−t
[
ψ̃1τ (xτ ) + u1τ (xτ )

]
[κ̃τ−1(xτ |x, k)− κ̃τ−1(xτ |xt, j)]

 g (εt |x ) dεt

(15)

where κ̃τ−1(xτ |x, k) and κ̃τ−1(xτ |xt, j) are defined analogously to κτ−1(xτ |x, k) and κτ−1(xτ |xt, j) by

replacing fj,t+1(x′|x) with f̃j,t+1(x′|x) as appropriate (and then repeating the first action). The presence

of the u1τ (xτ ) terms show that they cannot be derived without knowing the true systematic payoff for one of

the choices, regardless of the sample length. Supposing u1τ (xτ ) is known for all (τ, x), the previous section

implies ujt(x) is identified for all (j, t, x). Consequently p̃jt (x) can be recursively recovered: p̃T (x) =

pT (x) which implies ψ̃1T (xT ) = Ψ1T [pT (x) , x]; successive substitutions into ψ̃1s(xτ ) = Ψ1s [p̃s (x) , x] for

s ∈ {τ + 1, . . . , T} solve for p̃jτ (x) in (15), thus establishing identification.

This argument extends to temporary changes in state transitions when single action ρ-dependence

holds. In this special case ujt(x) is identified for all (j, x) and t < S − ρ. Since κ̃τ−1(xτ |x, k) =

κ̃τ−1(xτ |xt, j), the recursive procedure described above applies.

6A similar result also applies to temporary changes in G, the proof following the same logic.
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In general the case of short panels is more dire, because knowing the true systematic payoff for one of

the choices is generally not sufficient to identify the effects of even a temporary innovation. Since pτ (xτ )

is not identified for τ > S, neither is ψ1τ (xτ ) = Ψ1τ [pτ (x) , x] . From (15) it now follows that p̃jt (x) is not

identified for any t. Intuitively as a function of the states, the continuation values at S are unknown, and

the counterfactual regime redistributes the weights of reaching the various states at S; since the earlier

choices are partly determined by the unknown continuation values, it is not possible to solve for the CCPs.

5 Example

The following two-period, two-choice example illustrates the main results in a simple context. Consider

a two period model, T = 2, of the decision to smoke, d2t = 1, or not, d1t = 1, where the relevant state

variable is whether the individual is healthy, x = 1, or sick, x = 2. All individuals begin healthy and

remain so if they do not smoke in the first period, but should the individual smoke in the first period the

probability of falling sick in the second period is π. The disturbances are distributed Type 1 Extreme

Value, implying ψjt (x) = − ln [pjt (x)]. The true value of the systematic component from not smoking is

0 when healthy and c when sick; that is u1t(1) = 0 and u1t(2) = c for t ∈ {1, 2}.

In a long panel data is collected on both periods; if the true payoffs from not smoking are known then

the remaining utility parameters are identified. For example, applying (11) in Theorem 3:

u21(1) = ln p21(1)− ln p11(1) + βπ [ln p12(2)− ln p12(1)− c] (16)

Suppose, however, the econometrician does not know the true payoff from either action, and normalizes

the flow payoff in all periods to 0 for not smoking, regardless of the individual’s health state; that is

u∗1t(x) = 0 for x ∈ {1, 2} and t ∈ {1, 2}. Then from (8) in Theorem 1 and (16):

u∗21(1)− u∗11(1) = u21(1)− u11(1) + βπc (17)

Equation (17) illustrates a general property: differences relative to the normalized action are not identified,

in this case because c is not identified. In a short panel where there is only data on the first period, the

parameters are not identified even if value of not smoking is known, as is evident from (16) which is

constructed using CCPs for both periods.
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Next consider a counterfactual regime that subsidizes sick people with a payment of ∆, a regime change

that does not affect second period choices. Applying Theorem 5 and simplifying:

p̃11 (1) =
p11(1)

p11(1) + [1− p11(1)] exp (β∆π)

This formula illustrates the basic idea that only CCPs used in the current regime are necessary to compute

a counterfactual that has no effects on choices in periods beyond the end of the panel, so in this case a

short panel suffices to compute the counterfactual.

Finally, consider a new regime changing the probability of falling sick, conditional on smoking, from

π to π̃; this change has no effect on second period choices either. Forming analogous expressions to (16)

and (17) for the counterfactual regime, we substitute out u21(1) and u∗21(1) to obtain the odds ratios:

p̃∗21(1)

p̃∗11(1)
=
p21(1)

p11(1)
×
[
p12(1)

p12(2)

]β(π−π̃)
=
p̃21(1)

p̃11(1)
exp [β (π − π̃) c]

The ratio of the nonsmoking probabilities for the two periods differ between the normalization and the

true payoffs by the factor exp [β (π − π̃) c]. Therefore using a normalization that does not correspond

to information about the true value of a payoff leads to incorrect predictions of counterfactual choice

probability that are induced by changes in transition probabilities. Lastly, suppose the econometrician

knows the true values of u1t(x) for each (t, x), but data is only available on the first period smoking

decisions. It is not possible to recover any of the counterfactual CCPs in the new regime even when the

new regime only changes the first period transitions on the state variables because p12(x), the CCPs for

the second period in the current regime, are not identified.

6 Conclusion

Previous work shows current flow payoffs are exactly identified off long panels from the conditional choice

probabilities when the payoffs for one of the choices is known, along with the discount factor, and the

distribution of the unobservables. This paper shows these assumptions are not sufficient to identify the

remaining parameters off nonstationary short panels. In contrast to nonstationary short panels, inference

from long panels can be used to predict future events and permanent policy shifts. Such inference is

possible because in long panels, but not short, choice probabilities from the past fully capture anything
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that might happen in the future. This is the reason for focusing on temporary shifts when working

with short panels. Although the primitives are not identified off nonstationary short panels, knowing

the discount factor, the distribution of the unobserved variables and the choice probabilities suffices to

identify the behavioral effects of temporary changes in flow payoffs. Knowing the payoffs for one of the

choices suffices to identify the temporary shifts in the transition function off long panels, but not off

nonstationary short panels, except in special cases discussed in this paper. Whether a panel is long or

short is determined by the data generating process of the underlying model. Our analysis highlights a

trade-off between committing specification errors by treating data as a long panel, or by accepting the

limitations that accompany nonstationary short panels.

Finally, the case for estimating utility functions purely as a vehicle for making counterfactual pre-

dictions is not compelling unless the researcher has reason to impose restrictions on the utility functions

because of knowledge outside the data. To compute behavior induced by changing payoffs off panels either

short or long, it is not necessary to know the values of a choice specific payoff, but it is a requirement

for estimating the remaining utility parameters; to compute behavior induced by changing the transition

function off long panels and short panels with the single action finite dependence property, aside from the

CCPs, only data from outside the sample on the true value of a choice-specific payoff is necessary.
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7 Appendix

Proof of Theorem 1.

(i) First we show that if (7) and (8) hold, observational equivalence follows. As a starting point consider

the finite horizon case in which (7) and (8) reduce to:

u∗jt(xt) = ujt(xt) + ct(xt)− ul(x,t)t(xt) (18)

+
∑T

τ=t+1

∑X

x=1
βτ−t

[
cτ (x)− ul(x,τ),τ (x)

] [
κ∗τ−1(x|xt, l(xt, t))− κ∗τ−1(x|xt, j)

]
where we set t = T and drop all the terms involving τ for the last period and the static case T = 1. Given
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the representation of vjt(xt) provided by (10), it is optimal to set djt = 1 if:

j = arg max
k∈{1,...,J}

{
ukt(xt) + εkt +

∑T

τ=t+1

∑X

x=1
βτ−t

[
ul(x,τ),τ (x) + ψl(x,τ),τ (x)

]
κ∗τ−1(x|xt, k)

}

Subtracting the constant:

ul(x,t)t(xt) +
∑T

τ=t+1

∑X

x=1
βτ−tul(x,τ),τ (x)κ∗τ−1(x|xt, l(xt, t))

does not change the optimal choice, so djt = 1 is optimal if j ∈ {1, . . . , J} maximizes

ukt(xt)− ul(x,t)t(xt) + εkt (19)

+

T∑
τ=t+1

X∑
x=1

βτ−t
{
ul(x,τ),τ (x)

[
κ∗τ−1(x|xt, k)− κ∗τ−1(x|xt, l(xt, t))

]
+ ψl(x,τ),τ (x)κ∗τ−1(x|xt, k)

}
over k ∈ {1, . . . , J}. From (18):

ujt(xt)− ul(x,t)t(xt)−
∑T

τ=t+1

∑X

x=1
βτ−tul(x,τ),τ (x)

[
κ∗τ−1(x|xt, l(xt, t))− κ∗τ−1(x|xt, j)

]
= u∗jt(xt)− ct(xt)−

∑T

τ=t+1

∑X

x=1
βτ−tcτ (x)

[
κ∗τ−1(x|xt, l(xt, t))− κ∗τ−1(x|xt, j)

]
Substitute the second line into the maximand of (19) . Then djt = 1 is optimal if:

j = arg max
k∈{1,...,J}


u∗kt(xt)− ct(xt) + εkt

+
T∑

τ=t+1

X∑
x=1

βτ−t
{
cτ (x)

[
κ∗τ−1(x|xt, k)− κ∗τ−1(x|xt, l(xt, t))

]
+ ψl(x,τ),τ (x)κ∗τ−1(x|xt, k)

}


= arg max
k∈{1,...,J}

{
u∗kt(x) + εkt +

∑T

τ=t+1

∑X

x=1
βτ−t

[
cτ (x) + ψl(x,τ),τ (x)

]
κ∗τ−1(x|xt, k)

}

where the second line follows because the dropped terms do not depend on the choice. Therefore the

optimal choices are unaffected so the CCPs are the same, proving observational equivalence for T <∞.

(ii) A prerequisite for proving the infinite horizon extension is to show that a finite limit in (8) exists.

Since
{
ul(x,τ),τ (x)

}∞
τ=1

and {cτ (xτ )}∞τ=1 are bounded sequences, by M say, for all R ≤ ∞:∣∣∣∣∣
R∑

τ=t+1

X∑
xτ=1

βτ−t
[
cτ (xτ )− ul(x,τ),τ (xτ )

] [
κ∗τ−1(xτ |xt, l(x, t))− κ∗τ−1(xτ |xt, j)

]∣∣∣∣∣
≤

R∑
τ=t+1

X∑
xτ=1

βτ−t
[
|cτ (xτ )|+

∣∣ul(x,τ),τ (xτ )
∣∣] [∣∣κ∗τ−1(xτ |xt, l(x, t))

∣∣+
∣∣κ∗τ−1(xτ |xt, j)

∣∣]
≤ 4M /(1− β) (20)

Referring to (8), this proves
{
u∗jt(x)

}∞
τ=1

is bounded for each j ∈ {1, . . . , J} and x ∈ {1, . . . , X}.
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We now notate the horizon of the problem in the value functions, conditional value functions, and the

CCPs by Vt,T (x), vjt,T (x) and pjt,T (x) respectively for the (T, β, f, g, u) framework; similarly we write

V ∗t,T (x), v∗jt,T (x) and p∗jt,T (x) for those functions when the framework is (T, β, f, g, u∗). The proof for

finite horizon problems above shows pjtT (x) = p∗jtT (x) for all t < T , and hence ψjt,T (x) = ψ∗jt,T (x).

The inequalities in (20) imply limV ∗tT (x) = V ∗t,∞ (x) and lim v∗jtT (x) = v∗jt,∞(x), with both limits finite.

Hence limψ∗jt,T (x) = V ∗t,∞ (x) − v∗jt,∞(x) ≡ ψ∗jt,∞(x) exists and is finite too. Since ψ∗jt,T (x) = ψjt,T (x)

for all T < ∞, and limψjt,T (x) = ψjt,∞(x), it now follows that ψ∗jt,∞(x) = ψ∗jt,∞(x). Appealing to (4),

observational equivalence follows because:

pjt,∞ (x) =

∫ ∏J

k=1
1
{
εkt − εjt ≤ ψ∗kt,∞(x)− ψ∗jt,∞(x)

}
gt (εt |x ) = p∗jt,∞ (x) .

(iii) To prove the converse, first note that since u∗ and u are observationally equivalent then they

generate the same set of CCPs, implying from the identification of ψjt (x) that:

ψjt (x) = Ψjt [p (x) , x] = Ψjt [p∗ (x) , x] = ψ∗jt (x) (21)

and hence from (6)that:

u∗jt(x)− ujt(x) = v∗jt(x)− vjt(x)

−
T∑

τ=t+1

X∑
x′=1

βτ−t
[
cτ (x′)− ul(x′,τ),τ (x′)

]
κ∗τ−1(x′|x, j) (22)

Once again with reference to (21) and (6):

v∗jt(x)− vjt(x) = v∗l(x,t),t(x)− vl(x,t),t(x)

= ct (x)− ul(x,t),t(x) +

T∑
τ=t+1

X∑
x′=1

βτ−t
[
cτ (x′)− ul(x′,τ),τ (x′)

]
κ∗τ−1(x′|xt, l(x, t))

Substituting the expression for v∗jt(x)− vjt(x) obtained above into (22) proves the converse.

Proof of Corollary 2.

Using the matrix notation defined in the theorem, express uj as:

u∗j = uj + c− ul +

∞∑
τ=1

βτ (Fl − Fj)F τ−1l (c− ul) = uj + c− ul + β (Fl − Fj)
∞∑
τ=0

βτF τl (c− ul) (23)

Since βfj(x
′|x) ≥ 0 for all (j, x, x′) and β

∑X
x′=1 fj(x

′|x) = β < 1 for all (j, x) , and [I − βF1] is a diagonally

dominant matrix, the existence of [I − βF1]
−1

now follows from Hadley (page 118, 1961), where:

Ql ≡
∞∑
τ=0

βτF τl = I + βQlFl = [I − βFl]−1
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Substituting for the expressions for Ql in (23):

u∗j = uj + c− ul + β (Fl − Fj) [I − βFl]−1 (c− ul)

= uj + [I − βFl + β (Fl − Fj)] [I − βFl]−1 (c− ul)

yielding (9).

Proof of Theorem 3. From (10) and (4):

vjt(xt)− v1t(xt) = ujt(xt)− u1t(xt)

+

T∑
τ=t+1

X∑
xτ=1

βτ−t [u1τ (xτ ) + ψ1τ (xτ )] [κτ−1(xτ |xt, j)− κτ−1(xτ |xt, 1)]

= ψ1t(xt)− ψjt(xt)

Solving for ujt(xt) completes the first part of the theorem. For the stationary case, we use the matrix

notation defined in Theorems 1 and 2 to express uj as:

uj = u1 + Ψ1 −Ψj +

∞∑
τ=1

βτ (F1 − Fj)F τ−11 (u1 + Ψ1)

= u1 + Ψ1 −Ψj + β (F1 − Fj)

( ∞∑
τ=0

βτF τ1

)
(u1 + Ψ1)

Then following arguments used in the proof of Theorem 1 we substitute [I − βF1]
−1

for
∑∞
τ=0 β

τF τ1 in

the equation above to obtain (12).

Proof of Theorem 5. In the counterfactual regime, dynamic optimization requires the agent to choose

the action that maximizes εjt + ṽjt(x) over j ∈ {1, . . . , J} which implies:

p̃jt (x) =

∫ J∏
k=1

1
{
εkt − εjt ≤ ψ̃jt(x)− ψ̃kt(x)

}
g (εt |x ) dεt (24)

But:

ṽjS(x)− ṽkS(x) = ujS(x)− ukS(x) + ∆jS(x)−∆kS(x) +

X−1∑
x′=1

βVS+1(x′) [fjS(x′|x)− fkS(x′|x)]

= ∆jS(x)−∆kS(x) + vjS(x)− vkS(x)

= ∆jS(x)−∆kS(x) + ψkS(x)− ψjS(x) (25)

Substituting (25) into (24) yields:

p̃jS (x) =

∫ J∏
k=1

1 {εkS − εjS ≤ ∆jS(x)−∆kS(x) + ψkS(x)− ψjS(x)} g (εS) dεS
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But:

ψ̃jt(x)− ψ̃kt(x) = ujt(x)− ukt(x) + ∆jt(x)−∆kt(x) +

X−1∑
x′=1

βṼt+1(x′) [fjt(x
′|x)− fkt(x′|x)]

= ujt(x)− ukt(x) + ∆jt(x)−∆kt(x)

+

X−1∑
x′=1

βVt+1(x′) [fjt(x
′|x)− fkt(x′|x)] +

X−1∑
x′=1

β
[
Ṽt+1(x′)− Vt+1(x′)

]
[fjt(x

′|x)− fkt(x′|x)]

= ψjt(x)− ψkt(x) + ∆jt(x)−∆kt(x) +

X−1∑
x′=1

β
[
Ṽt+1(x′)− Vt+1(x′)

]
[fjt(x

′|x)− fkt(x′|x)]

Now we exploit the fact from (10) that for all t:

Vt(x) = u1t(x) + ψ1t(x) +

T∑
τ=t+1

X∑
xτ=1

βτ−t [u1τ (xτ ) + ψ1τ (xτ )]κτ−1(xτ |xt, 1)

with an analogous expression for Ṽt(x) which implies:

Ṽt(x)− Vt(x) = ∆1t(xt) + ψ̃1t(xt)− ψ1t(xt)

+

T∑
τ=t+1

X∑
xτ=1

βτ−t
[
∆1τ (xτ ) + ψ̃1τ (xτ )− ψ1τ (xτ )

]
κτ−1(xτ |xt, 1)

Therefore:

ψ̃jt(x)− ψ̃kt(x) = ψjt(x)− ψkt(x) + ∆jt(x)−∆kt(x) +

X−1∑
x′=1

β
[
Ṽt+1(x′)− Vt+1(x′)

]
[fjt(x

′|x)− fkt(x′|x)]

= ψjt(x)− ψkt(x) + ∆jt(x)−∆kt(x)

+

T∑
τ=t+1

X∑
xτ=1

βτ−t
[
∆1τ (xτ ) + ψ̃1τ (xτ )− ψ1τ (xτ )

]
[κτ−1(xτ |x, j)− κτ−1(xτ |x, k)]

as required.
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