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Abstract

This supplementary document provides more details on the data construction (Ap-

pendix A), nonparametric tests for structural change (Appendix B), identification and

estimation (Appendix C), numeric solution of the pure hazard model (Appendix D)

and the analyses using the extended sample (Appendix E). It also contains additional

tables with data summary, intermediate results, and results from robustness check

exercises.

A Data construction details

A.1 Firm type

Firm type is defined as a combination of industrial sector and firm characteristics for each

firm in each era. The data used to measure firm characteristics are from Compustat. We

classify the whole sample into three industrial sectors according to the Global Industry

Classification Standard (GICS) code. The primary sector includes firms in energy (GICS:

1010), materials (GICS: 1510), industrials (GICS: 2010, 2020, 2030), and utilities (GICS:

5510). The consumer goods sector includes firms in consumer discretionary (GICS: 2510,

2520, 2530, 2540, 2550) and consumer staples (GICS: 3010, 3020, 3030). The service sector

includes firms in health care (GICS: 3510, 3520), financial (GICS: 4010, 4020, 4030, 4040),

and information technology and telecommunication services (GICS: 4510, 4520, 5010). Firms
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that appear in different sectors over the sample period, they are classified into the sector in

which they appear most frequently.

Binary variables based on firm size and capital structure (debt-to-equity ratio) also cat-

egorize the firm types. Firm size is measured by the total assets on a firm’s balance sheet

(A). The capital structure is reflected by the debt-to-equity ratio (C). The numerator of

the ratio is the total liabilities and the denominator is the total common equity. We classify

each firm by whether its total assets in the pre-SOX era averaged over years were less than

or greater than the median of the averaged total assets for firms in the same sector, and

whether its averaged debt-to-equity ratio was less than or greater than the median of the

averaged debt-to-equity ratio for firms in that sector in the pre-SOX era. Therefore, firm

type within a sector is measured by the coordinate pair (A,C) with each corresponding to

whether that element is above (L) or below (S) its median of the industry in the pre-SOX

era. For example if (A,C) = (S, L) then the firm had lower total assets and a higher debt-

to-equity ratio than the median. The calculations are made in the first year the sample or

more generally the first year a firm joins the sample; this classification system implies firms

do not change categories.

A.2 Accounting return

Accruals and deferrals are examples of accounting features often used to convey information

to shareholders about the state of the firm. Managers exercise some discretion over how to

report these items. More generally, accounting numbers reveal information to shareholders

that managers are either obligated or choose to disclose. In our model, CEOs collect and

convey their private information on the firm’s prospects after accepting a contractual ar-

rangement with the firm. We construct an empirical measure of the report by accounting

returns to assets evaluated at book value, consistent with the concept of comprehensive in-

come in accounting practice. Let s̃it the accounting return for firm i at year t, calculated

as

s̃it ≡ (Assetit −Debtit +Dividendit) /(Asseti,t−1 −Debti,t−1)

where Assetit is the total assets at the end of year t, Debtit is the total liability minus

minority interest, Dividendit is the dividend to common stock plus the dividend to preferred

stock. All variables are deflated to base year 2006 before calculating the accounting return.

Specifically, we define the binary private state, denoted as sit ∈ {1, 2}, where sit = 1 means
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that in year t the accounting return s̃it is lower for firm i than the average for all firms within

the same sector, size, and capital structure categories, while sit = 2 means the reverse.

A.3 Excess return

Firm-year observations (i, t) are dropped if the firm changed its fiscal year end. Consequently

all the observations in the empirical analysis are based on a 12 month period, and therefore

comparable. Raw stock prices and adjustment factors are from the Compustat PDE dataset.

For each firm-year in the sample, we calculate πit, the monthly compounded stock returns

adjusted for splitting and repurchasing for the fiscal year. Then we subtract πt, the return to a

value-weighted market portfolio (NYSE/NASDAQ/AMEX), from πit to obtain x̃it ≡ πit−πt,
the net excess returns to firm i at year t. The excess return is the sum of x̃it plus total CEO

compensation for the corresponding year, scaled by firm’s value. Denoting by w̃it denote

total compensation to the CEO, and Vit the beginning firm value of firm i in the same fiscal

year, we compute the excess return as xit ≡ x̃it + w̃it/Vit.

A.4 Components of compensation

Following the concept of income-equivalent total compensation adopted by Antle and Smith

[1985, 1986], Hall and Liebman [1998], and Margiotta and Miller [2000], we construct a

measure of total compensation by adding change in wealth from options held and stocks

held to the other components of compensation included in ExecuComp. Thus, in addition

to the total compensation included in Compustat ExecuComp, we also calculate the holding

value of firm-specific equities.

To evaluate the call options for each CEO in each year, we apply the dividend-adjusted

Black-Scholes formula as follows. Let CALL denote the call option value, PRICE the

exercise price, M the time to maturity in years, SEC the underlying security price, Y the

dividend yield, R the risk-free return, and V the implied volatility. Let N (·) denote the

standard normal cumulative distribution function. Then the call option value is given by

the formula

CALL = e−YMN (d1)SEC − exp (−RM)N (d1 − V
√
M)PRICE,
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where:

d1 ≡
ln(SEC)− ln(PRICE) + (R− Y + V 2/2)M

V
√
M

.

We do not observe all the inputs of the Black-Scholes formula for grants made before 1993,

the first year of our sample. Compustat ExecuComp only provides the valuation information

for those options newly granted after 1993, including the number of underlying stock shares,

exercise prices, expiration dates, and issue dates. To accurately value the wealth change of a

CEO, however, we must estimate the value of unexercised options and update it each year,

including those options granted before 1993. To facilitate the calculation, we assume that

(i) no option is exercised until expiration dates; (ii) stock options granted before 1993 are

exercised in a FIFO fashion; and (iii), each CEO holds stock options granted before 1993 for

a fixed period equal to the average length of the holding period across all years when he is

in the sample. These assumptions suffice to interpolate the issue dates and exercised prices

for options granted before 1993. The same procedure is used to impute firm specific options

granted before the CEO enters our sample.

A.5 Bond prices

In our theoretical model the bond price equals the present value of a security paying one

consumption unit annually for a given number of years (including in perpetuity). By as-

sumption future interest rates and bond prices are known. In our empirical work we set the

horizon at 30 years. Denoting by ιt the one period real interest rate at t, the bond price bt

at t is

bt =
30∑
s=1

s
k=0

1

1 + ιt+k

The Treasury Bill yield curve is interpolated to obtain nominal interest rates. We de-

flate all nominal prices p̃t, including bond prices, to a base year of 2006, defining pt =

p̃t /deflator2006. Table S-2 Panel A shows real bond prices bt and bt+1 imputed for each

year t ∈ {1993, ..., 2005}.
When estimating the confidence region for the structural parameters of the model and

the welfare measures, we focus on bond prices in the pre- and post-SOX eras that apply to
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both eras, constructing a grid of five bond prices

b′ ∈ {15.55, 16.1, 16.4, 16.8, 17.8}

that approximate bond prices in the pre-SOX era, and two b′ ∈ {16.4, 16.8} that roughly

characterize bond prices in the post-SOX era, as indicated in Table S-2 Panel B. For example

bt+1 = 15.40 in fiscal year 2000, which roughly corresponds to setting b′ = 15.55.

The sets are obtained as follows. The average of the two extreme values on each end

determine the grid boundary. For the pre-SOX era, 15.55 is the average of 15.40 and 15.69,

and 17.8 is the average of 17.19 and 18.38. For the post-SOX era, 16.4 is the average of

16.33 and 16.45, and 16.80 is the average of 16.45 and 17.10. Note that 16.4 and 16.8 fall

into the range of the pre-SOX bond prices too, so those prices are kept as grid points for the

pre-SOX era as well. The remaining bond price in the five point grid of the pre-SOX era,

16.1, is the average of the other (mid-value) bond prices, namely 15.91, 16.00, 16.19, 16.21,

and 16.21; it roughly bisects the distance between 15.55 and 16.4, its adjacent values. Panel

A of Table S2 refers.

We predict the grid values of b as a quadratic function of b′ running a least squares

regression of bt on bt+1 without an intercept, but including linear and quadratic terms. The

coefficients (t-statistics) are 1.9271 (6.58) for the linear term and -0.056154 (-3.17) for the

quadratic term. The predicted values of b from the estimated regression along with the

corresponding value of b′ are reported in the the right two columns of Panel B in Table

S-2. Panel B of Table S-2 shows the years 1997-98 and 2000-01 are treated as having the

same bond price pair, namely (15.55, 16.39), even though the bond price pair in 1997-98 is

(15.69, 16.00) is not identical to (15.40, 16.19), the pair in 2000-01.

A.6 Trimming and labelling

Recalling the notation in the text, Z denotes the Cartesian product of categorical variables

used to partition firms, namely the three sectors, two firm sizes and two levels of financial

leverage. Let p ∈ {1, 2} designate the era, where p = 1 indicates the pre-SOX era and

p = 2 indicates the post-SOX era. With regards bond prices, we note that (i) since b = δ(b′)

by assumption, the compensation plan at a given point in time only depends on one bond

price, b′, not two, and (ii) the set of bond prices considered are interpolated as described in

Appendix A.5 and laid out in Panel B of Table S.2 with their corresponding years. In the

description of our empirical work, we label firm-year observations (i, t) by n ∈ {1, . . . , N}.
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The data on observation n is (xn, w̃n, bn, sn, zn, pn) where xn denotes excess returns, w̃n de-

notes total compensation measured with independent and identically distributed error, bn is

the current bond price imputed from Appendix A.5 corresponding to the year compensation

was paid, sn is the accounting state of the firm, zn is the firm category (given by sector size

and debt/equity ratio), and pn is an indicator for the era (pre- or post-SOX).

Several components of our test statistics are nonparametrically estimated density or

regression functions that condition the population and the sample on (s, z, p). These com-

ponents are computed off 24 subsamples of length Ns,z,p ≡
∑N

i=1 1 {(s, z, p) = (sn, zn, pn)}
that partition the sample by (s, z, p). To elucidate our estimation and testing procedures, we

annotate several of the variables by (s, z, p) to indicate the subsample they belong to. Thus

x
(s,z,p)
n is uniquely associated with the excess return of a particular mth observation in the

data that has excess return xm ≡ x
(s,z,p)
n , accounting return sm, firm category zm and era pm.

We label measured compensation in a similar way by w̃
(s,z,p)
n , and define a coarser partition

based on (s, z) with analogous annotation: for example x
(s,z)
n is uniquely associated with the

excess return of a particular observation m′ in the data that has excess return xm′ ≡ x
(s,z,p)
n ,

accounting return sm and firm category zm. Note that x
(s,z,p)
n = x

(s,z)
n with probability one,

the excess returns referring to the same observation, because the probability that xm = xm′

is zero if m 6= m′.

To eliminate the influence of outliers we trim the sample for the purposes of structural

estimation. Let min {x} denote the value of excess returns corresponding to the 2.5 per-

centile in the distribution of excess returns, and max {x} denote the excess return value

corresponding to the 97.5 percentile. For the purposes of structural estimation we included

only those observations for which min {x} ≤ xn ≤ max {x} for i ∈ {1, . . . , N}.

B Testing for structural change

We conduct two nonparametric tests of structural change after the SOX passage, to test for

inequality in the probability density functions of excess returns, and for differences in the

compensation schedule, between the pre-and post-SOX eras.

B.1 Change in the density of excess returns

Let fps (x|z) denote the probability density function of excess returns in the pre-SOX era

conditional on firm category z ∈ Z, state s ∈ {1, 2} and era p ∈ {1, 2}. The null hypothesis

of no change is that f 1
s (x|z) = f 2

s (x|z) for all (x, s, z) ∈ R×{1, 2}×Z. The test of equality
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(for each z) is based on the summing estimates of [f 1
s (x|z)− f 2

s (x|z)]
2

over observations in

subsamples designated by (s, z, 1) and (s, z, 2). Following Li and Racine [2007, page 363] we

calculate, for each (s, z), the statistic T pdfs,z by

T pdfs,z = σ̂−1
x,s,z(Ns,z,1Ns,z,2hs,z)

1/2(ζ̂s,z − ĉs,z),

where

ζ̂s,z =
1√

2πhs,zN2
s,z,1

∑Ns,z,1

m=1

∑Ns,z,1

n=1
exp

[
−1

2

(
x
(s,z,1)
m −x(s,z,1)n

hs,z

)2
]

+
1√

2πhs,zN2
s,z,2

∑Ns,z,2

m=1

∑Ns,z,2

n=1
exp

[
−1

2

(
x
(s,z,2)
m −x(s,z,2)n

hs,z

)2
]

− 2√
2πhs,zNs,z,1Ns,z,2

∑Ns,z,1

m=1

∑Ns,z,2

n=1
exp

[
−1

2

(
x
(s,z,1)
m −x(s,z,2)n

hs,z

)2
]
,

ĉs,z =
(
hs,z
√

2π
)−1 (

N−1
s,z,1 +N−1

s,z,2

)
,

and

σ̂2
x,s,z =

1

2πhs,zN2
s,z,1

∑Ns,z,1

m=1

∑Ns,z,1

n=1
exp

[
−1

4

(
x
(s,z,1)
m −x(s,z,1)n

hs,z

)4
]

+
1

2πhs,zN2
s,z,2

∑Ns,z,2

m=1

∑Ns,z,2

n=1
exp

[
−1

4

(
x
(s,z,2)
m −x(s,z,2)n

hs,z

)4
]

+
1

πhs,zNs,z,1Ns,z,2

∑Ns,z,1

m=1

∑Ns,z,2

n=1
exp

{
−1

4

(
x
(s,z,1)
m −x(s,z,2)n

hs,z

)4
}

The bandwidth hs,z is calculated following Silverman’s rule of thumb, conditional on z ∈
{1, 2}×Z but margining over the two eras. Similarly, σ̂s,z is the estimated standard deviation

of excess returns margining over both eras. The test statistic T pdfs,z , asymptotically distributed

as standard normal distribution under the null hypothesis that f 1
s (x|z) = f 2

s (x|z), is one-

sided. Hence the null is rejected at the 1% significance level if T pdfs,z > 2.33, at the 5%

significance level if T pdfs,z > 1.64, and at the 10% significance level if T pdfs,z > 1.28.

B.2 Change in the compensation schedule

Denote by w(s,z,p) (x) the optimal CEO compensation schedule as a function of (x, s, z, p).

Note that

w(s,z,p)
n ≡ w(s,z,p)

(
x(s,z,p)
n

)
= E

[
w̃(s,z,p)
n

]
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because the difference w̃
(s,z,p)
n −w(s,z,p)

n is identically and independently distributed measure-

ment error with mean zero. Define the nonparametric (standard normal) kernel estimator

with bandwidth hs,z,2 for w
(s,z,p)
n by

ŵ(s,z,2)
n ≡

Ns,z,2∑
m=1

w̃(s,z,2)
m exp

−1
2

(
x

(s,z,2)
m − x(s,z,2)

n

hs,z,2

)2
/Ns,z,2∑

m=1

exp

−1
2

(
x

(s,z,2)
m − x(s,z,2)

n

hs,z,2

)2


Similarly ŵ
(s,z)
n , a nonparametric (standard normal) kernel estimator for w

(s,z)
n ≡ E [w̃ |xn, sn, zn ]

with bandwidth hs,z, is defined as

ŵ(s,z)
n =

Ns,z∑
m=1

w̃(s,z)
m exp

−1
2

(
x

(s,z)
m − x(s,z)

n

hs,z

)2
/Ns,z,2∑

m=1

exp

−1
2

(
x

(s,z)
m − x(s,z)

n

hs,z

)2
 .

Testing the null hypothesis that w(s,z,1) (x) = w(s,z,2) (x) amounts to a test of whether

w(s,z) (x) = w(s,z,2) (x), that the compensation schedule is not affected by conditioning on

the era. It is based on the sum of squared differences of nonparametric estimates of w
(s,z,2)
n

and w
(s,z)
n , adjusted for trimming the sample. Define the trimming indicator variable A

(s,z)
n ,

by culling the observations for each subsample defined by (s, z) with outlier excess returns:

A
(s,z)
n = 1 if x

(s,z)
n falls within the 2.5% to 97.5% range of excess returns for those observations

belonging to the (s, z) subsample, and A
(s,z)
n = 0 otherwise. Following Aı̈t-Sahalia, Bickel,

and Stoker [2001] the test statistic TWd is defined as

TWs,z = σ̂−1
w,s,z

[
Ns,z,2∑
n=1

(
ŵ(s,z,2)
n − ŵ(s,z)

n

)2 A
(s,z)
n

Ns,z

−
Ns,z,2∑
n=1

σ̂2
n,w,s,z,2

f̂
(s,z,2)
n

A
(s,z)
n

4πhs,z,2N
−

Ns,z∑
n=1

σ̂2
n,w,s,z

f̂
(s,z)
n

hs,z,2Â
(s,z)
n

2
√
πhs,zN

]
,

where Â
(s,z)
n is a nonparametric estimator for E

[
A

(s,z)
n |xn, sn, zn

]
with a standard normal

kernel and bandwidth hs,z, defined as

Â(s,z)
n =

Ns,z∑
m=1

A(s,z)
m exp

−1

2

(
x

(s,z)
m − x(s,z)

n

hs,z

)2
/Ns,z∑

m=1

exp

−1

2

(
x

(s,z)
m − x(s,z)

n

hs,z

)2
 .

the densities of excess returns, f
(s,z,2)
n and f

(s,z)
n , are estimated nonparametrically by

f̂ (s,z,2)
n =

1√
2πNs,z,2hs,z,2

Ns,z,2∑
m=1

exp

[
−1

2

(
xm − xn
hs,z,2

)2
]
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f̂ (s,z)
n =

1√
2πNs,zhs,z

Ns,z∑
m=1

exp

[
−1

2

(
xm − xn
hs,z

)2
]
.

and estimates of the conditional variance terms are given by

σ̂2
n,w,s,z,2 =

Ns,z,2∑
m=1

[(
w̃(s,z,2)
m

)2 −
(
ŵ(s,z,2)
m

)2
]

exp

{
−1

2

(
xm − xn
hs,z,2

)2
}/

Ns,z,2∑
m=1

exp

{
−1

2

(
xm − xn
hs,z,2

)2
}

σ̂2
n,w,s,z =

Ns,z∑
m=1

[(
w̃(s,z)
m

)2 −
(
ŵ(s,z)
m

)2
]

exp

{
−1

2

(
xm − xn
hs,z

)2
}/

Ns,z∑
m=1

exp

{
−1

2

(
xm − xn
hs,z

)2
}

σ̂2
w,s,z =

1

4πNs,z

∑Ns,z

n=1

(
σ2
n,w,s,z

)2
A2
n,d

f̂
(s,z)
n

.

This one-sided test statistic is asymptotically distributed standard normal with mean 0

and variance 1. Thus the null hypothesis is rejected at the (i) 1% significance level if TWd >

2.33, (ii) 5% significance level if TWd > 1.64, and (iii) 10% significance level if TWd > 1.28.

C Identification and estimation details

This appendix presents the details of identification, structural estimation, and the counter-

factual analyses.

C.1 Identification

This subsection set identifies the risk aversion parameter, γ. Given a pair of bond prices

pertaining to the current period and the the next one, denoted by (b, b′), the following set

of restrictions places limits on the observationally equivalent values of γ. To reduce the

notational clutter we follow the text in suppressing the dependence of these restrictions

on (b, b′). After explaining how these restrictions utilized in identification, we show how

variation in the bond prices generates additional restrictions.

The model requires that at least one of the truth-telling constraint and the sincerity

constraint should be binding. This implies that

Ψ3(γ) ≡ E2 [v1(x, γ)− v2(x, γ)] ≥ 0,

Ψ4(γ) ≡ E2

[
α1(γ)1/(b−1)v1(x, γ)g2(x, γ)− α2(γ)1/(b−1)v2(x, γ)

]
≥ 0,
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and

Ψ5(γ) ≡ Ψ3(γ)Ψ4(γ) = 0.

The Kuhn-Tucker multipliers, η3(γ) and η4(γ), used in the definition of g1(x, γ), are non-

negative. The complementary slackness conditions for the truth-telling and sincerity con-

straints must also be satisfied, implying Ψ6(γ) ≡ Ψ3(γ)η3(γ) = 0 and Ψ7(γ) ≡ Ψ4(γ)η4(γ) =

0. We impose another exclusion restriction, that α1 does not depend on the private state,

yielding

Ψ1(γ) ≡ E [vs(x, γ)]−1 − E1[v1(x, γ)]−1 − η3(γ)E1[h(x)v1(x, γ)]E1[v1(x, γ)]−1

−η4(γ)
[
α1(γ)
α2(γ)

]1/(bt−1)

E1[g2(x, γ)h(x)v1(x, γ)]E1[v1(x, γ)]−1 = 0.

In addition, the likelihood g1(x, γ) is positive, implying

Ψ2(γ) ≡ E1 [1 {g1(x, γ) > 0} − 1] = 0,

and by definition the expected value of g1(x, γ) is one, so

Ψ8(γ) ≡ E1 [g1(x, γ)]− 1 = 0

Since the data show the CEO is not paid a fixed wage in either state, we infer it must be

optimal for shareholders to induce the CEO works in both private states rather than shirk

in either of them. The corresponding inequality restriction is:

Λ(γ) ≡
∑2

s=1
ϕs
{
Es[Vsx− ws(x)]− Es

[
Vsxgs(x, γ)− b′

b−1
γ−1 ln[α1(γ)]

]}
≥ 0.

It is evident from the inequalities and equalities laid out above, that the collection of the

restrictions defines a Borel set of the risk aversion parameters that depend on (b, b′). We

now acknowledge the dependence explicitly by writing

Γ (b, b′) ≡

γ > 0 :

Λ(γ; b, b′) ≥ 0

Ψj(γ; b, b′) = 0 for j ∈ {1, 2, 5, . . . , 8}
Ψk(γ; b, b′) ≥ 0 for k ∈ {3, 4}
ηk(γ; b, b′) ≥ 0 for k ∈ {3, 4}

 .

Variation in bond prices over time yield additional sets of restrictions. The intersection of
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these sets is defined as

Γ ≡
⋂

(b,b′)∈B2

Γ (b, b′) = {γ > 0 : Q(γ) = 0}

where B2 denotes the set of distinct pairs of bond prices generated by the data, the criterion

function Q(γ) is defined as

Q(γ) ≡
∑

(b,b′)∈B2

Q(γ; b, b′) (1)

and

Q(γ; b, b′) ≡ min [0,Λ(γ; b, b′)]
2

+
∑

j∈{1,2,5,...,8}
Ψ2
j(γ; b, b′)

+
∑4

k=3

{
min [0,Ψk(γ; b, b′)]

2
+ min [0, ηk(γ; b, b′)]

2
}
.

C.2 Estimation

The structural estimation can be divided into three stages. We estimate the optimal com-

pensation plan for each sector, pre- and post-SOX, and bond prices, then the density of

excess returns when the CEO works conditional on the same variables, both of which are

inputs into the last stage of obtaining a consistent estimate of the identified set for the risk

aversion parameters.

Compensation Conditioning on the accounting state of the firm state s ∈ {1, 2}, firm

category z ∈ Z, the era (pre- and post-SOX) denoted by p ∈ {pre-SOX, post-SOX} and

bond prices (b, b′), we estimate the optimal compensation plan in three steps:

1. Select 200 evenly distributed points of excess returns over the range min {x} to max {x},
and denote them by xk for k ∈ {1, .., 200}.

2. Estimate E [w̃ |, xk, b, s, z, p ], total compensation conditional on each value of (xk, b, s, z, p),

with the nonparametric regression estimator ŵ
(b,s,z,p)
k , obtained with standard normal

kernel density function

ŵ
(b,s,z,p)
k =

∑N
n=1 w̃

(s,z,p)
n K(xn−xk

hx
)K( bn−b

hb
)∑N

n=1K(xn−xk
hx

)K( bn−b
hb

)

11



3. For each (b, s, z, p) interpolate ŵ
(b,s,z,p)
k with a spline formed from

{
ŵ

(b,s,z,p)
k

}200

k=1
to

impute total compensation for every observation n ∈ {1, . . . , N} in the sample, denoted

by ŵn.

Firm performance The probability density function for excess returns from working,

conditional on (s, z, p), denoted by fps (x|z), is nonparametrically estimated with a standard

normal kernel density function by

f̂ps (x|z) =
1√

2πNs,z,phs,z,p

Ns,z,p∑
n=1

exp

[
−1

2

(
xn − x
hs,z,p

)2
]

(2)

where hs,z,p is the bandwidth.

Confidence region for γ: Let Q(N)(γ) denote a consistent estimate of Q(γ), formed from

the data of sample size N by substituting sample analogues for their population counterparts

that are used in defining Q(γ) given in (1). Note that Q(N)(γ) is strictly positive only because

expectations and limits in the population differ from their respective sample analogues.

When x is unbounded, Q(N)(γ) converges to zero at rate N2/3 (Gayle and Miller, [2015]).

We construct a confidence region for the observationally equivalent risk aversion parameters

for each specification we investigate, defining

Γ̂δ ≡
{
γ > 0 : N2/3Q(N)(γ) ≤ ĉδ

}
, (3)

where ĉδ is a consistent estimator of cδ, the critical value of the confidence region for a

test of size δ. Asymptotically, the probability that the set of observationally equivalent γ’s

constructed this way are not contained in Γ is δ.

We modify a subsampling procedure proposed by Chernozhukov, Hong and Tamer [2007]

to estimate cδ. Consider all subsets of the data with size Nb < N , where Nb −→ ∞, but

Nb/N −→ 0, and denote the number of subsets by BN . Define c
(N)
0 and Γ̂0 as

c
(N)
0 ≡ inf

γ̃>γN

[
N2/3Q(N)(γ̃)

]
+ κN

Γ̂0 ≡ {γ ≥ γN : N2/3Q(N)(γ) ≤ c
(N)
0 },

where κN ∝ lnN and γN , a strictly positive sequence, converges to zero at a rate faster than

12



N2/3. For each subset i ∈ {1, ..., BN} of size Nb define

C(i,Nb) ≡ sup
γ∈Γ̂0

[
(Nb)

2/3Q(i,Nb)(γ)
]
,

and denote by ĉδ the (1− δ) quantile of the sample
{
C(1,Nb), . . . , C(BN ,Nb)

}
. Substituting ĉδ

into (3) we form Γ̂δ from Q(N)(γ).

To implement the subsampling procedure, we draw 100 subsamples from the original full

sample, following the joint distribution of the public states and the private states. Each

subsample contains 80% of the observations in the original sample. For each subsample,

we calculate the value of the objective function and use these values to estimate the 95%

critical value of the confidence region. The 95 percent confidence region of the risk aversion

parameter in the CEO CARA utility function is displayed in Table S-7, estimated for each

phase separately and imposing a common value over both phases. The confidence regions in

Panel A are obtained using the full sample. The Certainty Equivalent column in Table S-7

gives economic meaning to the estimates of risk aversion in Table S-7, where the amount a

CEO would pay to avoid an equiprobable gamble with losing or winning $1,000,000.

C.3 Counterfactual analysis

This subsection outlines procedures used to approximate fs(x) and gs(x) for conducting the

counterfactual analysis. Approximating fs(x) with a parametric function essentially smooths

a nonparametric function. Estimating the likelihood ratio gs(x), or equivalently gs(x)fs(x),

is more involved because both functions are only set identified from the curvature of the

optimal compensation schedule, which in turn depends on bond prices and the risk aversion

parameter.

With regards fs(x), for each (s, z, p) ∈ {1, 2} × Z ×{1, 2} we approximate the density

for excess returns, when the CEO works, by a truncated normal density, writing

f̂s(x, xL, µs, σs) =

[
Φ

(
µs − xL
σs

)
σs
√

2π

]−1

exp

[
−1

2

(
x− µs
σs

)2
]
,

where Φ(·) is the cumulative standard normal distribution function, xL is the lower bound

of the support, (µs, σs) denotes the mean and standard deviation of the parent normal

distribution, and the dependence of f̂s(·) on (z, p) is suppressed here to reduce notational

clutter. The cutoff point for the support, xL, estimated by the lowest excess return in the

13



sample, denoted by x̂L, which is a superconsistent estimator for xL. Then we evaluate the

nonparametric estimator for f
(N)
s (xk) using (2) at 200 evenly spaced points {xk}200

k=1, and

minimize the mean squared deviation between f (N)(xk) and fs(xk, xL, µs, σs) summed over

k with respect to µs and σs to obtain

(µ̂s, σ̂s) = arg min
(µs,σs)

∑200

k=1

[
f (N)
s (xk)− f̂s(xk, x̂L, µs, σs)

]2

.

Table S-8 presents the Mean Square Errors (MSE) for these approximations. It shows the

truncated normal distribution closely approximates the distribution of excess returns.

We approximate gs(x) by the ratio of two truncated normal distributions with a common

lower truncated point xL. This implies the shirking density, denoted by f
s
(x) ≡ gs(x)fs(x),

is approximated by

f̂
s
(x, xL, µs, σs) =

[
Φ

(
µ
s
− xL
σs

)
σs
√

2π

]−1

exp

[
−1

2

(
x− µ

s

σs

)2
]
.

For each γ in the estimated identified set, we follow a similar procedure described above

for the work density, to approximate the confidence intervals of the identified region for

f̂
s
(x, xL, µs, σs). Specifically, for each γ ∈ Γ̂δ defined in (3) we first compute an esti-

mate of gs(xk, γ), denoted by ĝs(xk, γ). Then we minimize the squared distance between

f̂
s
(xk, xL, µs, σs) and the product of f

(N)
s (xk)ĝs(xk, γ) summed over k ∈ {1, . . . , 200} with

respect to
(
µ
s
, σs

)
, to obtain

(µ̂
s
(γ), σ̂s(γ)) = arg min

(µs,σs)

200∑
k=1

[
f (N)
s (xk|Z)ĝs(xk, γ)− f̂

s
(xk, x̂L, µs, σs))

]2

.

for all γ ∈ Γ̂δ, and form the union of the minimizers. Table S-9 displays the confidence

interval of the MSE for these approximations. It shows the truncated normal distribution

closely approximates the distribution of excess return under shirking.

D Solving the pure moral hazard model

To derive optimal compensation as a function of x in the analogous two-state pure moral

hazard model for a given set of primitives (that is fixing values for fs(x), gs(x), α1, α2 and γ),

we drop the truth-telling and sincerity constraints constraints, replace the single participation
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constraint with one for each state, retain both incentive compatibility constraints, minimize

the modified objective function, use the participation constraints to substitute out their

associated Kuhn-Tucker multiplier, and rearrange the first-order conditions to obtain

ys(x) = γ−1 b′

b− 1
lnα2 + γ−1b′ ln[1 + ηps

(
α2

α1

) 1
b−1 − ηpsgs(x)],

where ys(x) is the optimal compensation schedule and ηps solves

∫ ∞
x

gs(x)− (α2 /α1 )
1

b−1

1 + ηps (α2 /α1 )
1

b−1 − ηpsgs(x)
fs(x)dx = 0. (4)

We numerically compute the integral (4) as follows. For each candidate solution value

of ηps , we conduct a grid search to detect the points in the range of x where the left side of

(4) is either infinite or zero. These points divide the domain of x into a number of intervals.

The integral (4) is then numerically computed for the candidate ηps on each interval and

then summed over the integrated values. Searching over different positive values of ηpst to

minimize the squared value of the left side of (4) yields the unique root, whose existence is

guaranteed by the Kuhn-Tucker theorem.

E Extended Sample

Panel C and Panel D in Table S-3 presents the distribution of accounting returns in the

extended sample. Table S-4 presents the time-series summary of the firm characteristics

from 1993 to 2005. Table S-5 presents the firm characteristics and compensation before and

after SOX was enacted.
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Table S-1: Nonparametric Tests (Balanced Sample)
A: Test on PDF of Excess Returns

Sector Primary Consumer Service
(Size, D/E) Bad Good Bad Good Bad Good

(S,S) 7.36 1.31 30.57 18.74 10.84 12.82
(S,L) 4.67 1.98 0.97 10.02 9.3 5.91
(L,S) 4.30 4.67 3.54 3.38 10.52 6.6
(L,L) 29.3 9.44 11.03 23.28 47.31 31.01

B: Test on Contract Shape

Sector Primary Consumer Service
(Size, D/E) Bad Good Bad Good Bad Good

(S,S) 6.82 2.57 3.86 1.67 4.46 3.02
(S,L) 12.66 5.18 2.38 2.32 3.36 8.09
(L,S) 12.61 5.03 2.09 2.73 4.95 3.84
(L,L) 9.82 3.56 4.21 3.02 9.50 2.00

Note: The critical value for these one-sided tests at the 5% confidence level is 1.64.
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Table S-2: Bond Prices

A. Raw values

Fiscal year bt bt+1

1993 16.86 18.38

1994 18.38 15.91

1995 15.91 16.21

1996 16.21 16.00

1997 16.00 15.69

1998 15.69 17.19

1999 17.19 16.19

2000 16.19 15.40

2001 15.40 16.21

2002 16.21 16.57

2003 16.57 17.10

2004 17.10 16.45

2005 16.45 16.33

B. Grid selection

Fiscal year bt+1 Grid b′ Grid b

2000 15.40 15.55 16.39

1997 15.69

1994 15.91 16.1 16.47

1996 16.00

1999 16.19

2001 16.21

1995 16.21

2002 16.57

1998 17.19 17.8 16.51

1993 18.38

2005 16.33 16.4 16.50

2004 16.45 16.8 16.53

2003 17.10

Note: Panel A lists the raw values of the bond prices (bt, bt+1) that are calculated using the

method explained in the section A.f. Panel B ranks the bond price bt+1 ascendingly within each

era, respectively, and reports the grid points used in the structural estimation.
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Table S-3: Estimates of the Probability Distribution of Accounting Re-

turns

A. Pre-SOX (Main Sample)

Firm Type Primary Consumer goods Service

(A, C) ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs

(S, S) 1.2 1840 1.4 1500 1.3 2359
(S, L) 1.4 779 1.3 669 1.1 638
(L, S) 1.4 898 1.3 752 1.5 796
(L, L) 1.3 2134 1.4 1625 1.5 2880
Total 1.3 5651 1.4 4546 1.4 6673

B. Post-SOX (Main Sample)

Firm Type Primary Consumer goods Service

(A, C) ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs

(S, S) 1.6 343 1.1 322 1.1 637
(S, L) 1.5 130 0.7 96 1.3 149
(L, S) 1.2 169 0.8 148 1.1 223
(L, L) 1.4 381 1.0 277 1.7 588
Total 1.4 1023 1.0 843 1.3 1597

C. Pre-SOX (Extended Sample)

Firm Type Primary Consumer goods Service

(A, C) ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs

(S, S) 1.2 2039 1.4 1665 1.2 2738
(S, L) 1.3 852 1.2 724 1.1 719
(L, S) 1.3 989 1.2 893 1.3 924
(L, L) 1.2 2335 1.4 1773 1.4 3231
Total 1.2 6215 1.3 5001 1.3 7612

D. Post-SOX (Extended Sample)

Firm Type Primary Consumer goods Service

(A, C) ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs ϕ1/ϕ2 Obs

(S, S) 1.3 534 1.1 494 1.1 944
(S, L) 1.3 197 0.8 150 1.1 221
(L, S) 1.2 256 0.8 222 1.0 331
(L, L) 1.1 576 1.1 412 1.6 912
Total 1.2 1563 1.0 1278 1.2 2408

Note: Firm type is measured by the coordinate pair (A, C), where A is assets and C is the

debt-to-equity ratio with each corresponding to whether that element is above (L) or below (S) its

industry median. Accounting return is classified as ”Good (Bad)” if its value is greater (less) than

the industry average and its probability is ϕ2(ϕ1).
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Table S-6: Nonparametric Tests (Extended Sample)

A: Test on PDF Abnormal of Returns

Sector Primary Consumer goods Service
(A, C) Bad Good Bad Good Bad Good
(S, S) 18.05 10.34 12.51 12.39 14.25 14.55
(S, L) 5.88 5.02 1.26 2.27 14.70 5.29
(L, S) 3.29 4.16 3.74 2.03 9.01 19.69
(L, L) 29.46 8.57 9.03 8.68 71.68 29.56

B: Test on Contract Shape

Sector Primary Consumer goods Service
Firm Type Bad Good Bad Good Bad Good

(S, S) 10.06 1.58 2.89 1.09 1.54 1.47
(S, L) 6.82 6.45 3.30 1.71 4.08 6.85
(L, S) 19.67 7.34 5.51 3.52 5.66 8.74
(L, L) 10.32 23.38 3.69 6.74 7.37 10.65

Note: Firm type is measured by the coordinate pair (A, C), where A is assets and C is the

debt–to-equity ratio with each corresponding to whether that element is above (L) or below (S) its

industry median. Accounting return is classified as ”Good (Bad)” if it is greater (less) than

the industry average. Both tests are one-sided test and both statistics follow a standard normal

distribution N(0, 1).
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Table S-7: The 95% Confidence Regions of Risk-aversion and

Corresponding Certainty Equivalent (in 2006 US$)
A: Main Sample
Eras Years Risk Aversion Certainty Equivalent
Pre-SOX 1993-2001 (0.0695, 0.6158) (34722, 290206)
Post-SOX 2004-2005 (0.0695, 0.6158) (34722, 290206)
Common (0.0695, 0.6158) (34722, 290206)

B: Extended Sample
Eras Years Risk Aversion Certainty Equivalent
Pre-SOX 1993-2002 (0.0784, 0.2335) (39160, 115704)
Post-SOX 2003-2005 (0.0616, 0.2335) (30781, 115704)
Common (0.0784, 0.2335) (39160, 115704)

Note: The subsampling procedure was performed using 100 replications of subsamples with 80%

of full sample observations, each using 100 grid points on the searching interval [0.0003, 54.598].

The certainty equivalent corresponding to one particular value of the risk aversion in the estimated

confidence region is the certainty equivalent of a equiprobable gamble of losing or winning 1 million

dollars.
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Table S-8: MSE of the Density Approximation Under working

Main Sample Extended Sample

Pre-SOX Post-SOX Pre-SOX Post-SOX

Sector Firm Type Bad Good Bad Good Bad Good Bad Good

Primary (S, S) 0.006 0.004 0.004 0.013 0.006 0.003 0.006 0.017

(S, L) 0.009 0.005 0.069 0.038 0.007 0.005 0.042 0.028

(L, S) 0.006 0.002 0.044 0.013 0.006 0.002 0.018 0.004

(L, L) 0.014 0.011 0.028 0.019 0.013 0.007 0.022 0.014

Consumer (S, S) 0.004 0.003 0.014 0.018 0.003 0.002 0.008 0.015

goods (S, L) 0.008 0.005 0.021 0.020 0.008 0.006 0.038 0.016

(L, S) 0.003 0.004 0.022 0.003 0.002 0.002 0.013 0.003

(L, L) 0.005 0.004 0.017 0.003 0.004 0.003 0.018 0.010

Service (S, S) 0.005 0.003 0.012 0.002 0.008 0.004 0.007 0.003

(S, L) 0.009 0.005 0.038 0.042 0.007 0.005 0.018 0.042

(L, S) 0.003 0.006 0.010 0.002 0.006 0.010 0.013 0.008

(L, L) 0.004 0.005 0.016 0.003 0.004 0.003 0.018 0.006

Note: Approximation used 200 equally spaced points. Firm type is measured by the coordinate

pair (A, C), where A is assets and C is the debt-to-equity ratio with each corresponding to whether

that element is above (L) or below (S) its industry median. Accounting return is classified as ”Good

(Bad)” if it is greater (less) than the industry average.
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Table S-9: MSE of the Density Approximation Under Shirking
Main Sample Pre-SOX Post-SOX

Sector Firm Type Bad Good Bad Good

Primary (S, S) (0.007, 0.008) (0.002, 0.004) (0.002, 0.004) (0.023, 0.025)

(S, L) (0.005, 0.007) (0.008, 0.010) (0.071, 0.074) (0.053, 0.056)

(L, S) (0.004, 0.005) (0.002, 0.003) (0.012, 0.013) (0.056, 0.109)

(L, L) (0.015, 0.017) (0.010, 0.012) (0.017, 0.019) (0.005, 0.007)

Consumer (S, S) (0.001, 0.002) (0.002, 0.009) (0.001, 0.006) (0.009, 0.022)

goods (S, L) (0.007, 0.008) (0.005, 0.006) (0.027, 0.062) (0.010, 0.012)

(L, S) (0.003, 0.006) (0.004, 0.011) (0.004, 0.016) (0.012, 0.023)

(L, L) (0.005, 0.006) (0.004, 0.005) (0.007, 0.008) (0.005, 0.009)

Service (S, S) (0.005, 0.008) (0.002, 0.003) (0.007, 0.013) (0.002, 0.007)

(S, L) (0.015, 0.020) (0.006, 0.008) (0.061, 0.071) (0.036, 0.047)

(L, S) (0.004, 0.007) (0.004, 0.018) (0.013, 0.015) (0.002, 0.002)

(L, L) (0.003, 0.007) (0.005, 0.016) (0.012, 0.016) (0.003, 0.004)

Extended Sample Pre-SOX Post-SOX

Sector Firm Type Bad Good Bad Good

Primary (S, S) (0.008, 0.009) (0.003, 0.003) (0.004, 0.005) (0.037, 0.039)

(S, L) (0.007, 0.007) (0.008, 0.009) (0.045, 0.046) (0.050, 0.052)

(L, S) (0.005, 0.005) (0.002, 0.003) (0.015, 0.015) (0.006, 0.008)

(L, L) (0.017, 0.018) (0.012, 0.013) (0.012, 0.012) (0.005, 0.006)

Consumer (S, S) (0.001, 0.002) (0.001, 0.002) (0.002, 0.005) (0.001, 0.002)

goods (S, L) (0.008, 0.008) (0.006, 0.007) (0.134, 0.135) (0.025, 0.027)

(L, S) (0.002, 0.003) (0.003, 0.005) (0.019, 0.021) (0.008, 0.012)

(L, L) (0.004, 0.005) (0.004, 0.004) (0.010, 0.011) (0.008, 0.008)

Service (S, S) (0.009, 0.010) (0.003, 0.003) (0.009, 0.011) (0.002, 0.003)

(S, L) (0.013, 0.014) (0.007, 0.007) (0.027, 0.027) (0.036, 0.040)

(L, S) (0.007, 0.007) (0.008, 0.012) (0.027, 0.027) (0.004, 0.004)

(L, L) (0.004, 0.005) (0.004, 0.005) (0.018, 0.019) (0.002, 0.003)

Note: This table reports the confidence region of MSE or the approximation of gst(x)fst(x) by

a truncated normal distribution. The confidence region is bounded by the minimum and maximum

value of the MSE for the identified set of γ that requires αj=1,2 to be invariant with bond price

and the moral hazard costs to be nonnegative. Firm type is measured by the coordinate pair (A,

C), where A is assets and C is the debt-to-equity ratio with each corresponding to whether that

element is above (L) or below (S) its industry median. Accounting return is classified as ”Good

(Bad)” if it is greater (less) than the industry average.
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Table S-10: Gross Losses to the Shareholders Firms the CEO from

Shirking (in %, Extended Sample)

ρ1 ≡
∑2

s=1 ϕs,preEs,pre {x [1− gs,pre(x)]}
Sector (A, C) ρ1 ∆ρ1

(S, S) (11.94, 12.07) (-0.59, -0.51) -
Primary (S, L) (12.53, 12.90) (-5.40, -5.08) -

(L, S) (10.21, 10.68) (-2.57, -2.49) -
(L, L) (5.90, 6.09) (-1.02, -0.94) -
(S, S) (18.30, 18.51) (-9.33, -9.25) -

Consumer (S, L) (10.60, 10.61) (11.81, 12.70) +
Goods (L, S) (9.15, 10.03) (-1.43, -0.95) -

(L, L) (7.52, 8.13) (-2.84, -2.02) -
(S, S) (17.44, 17.57) (-3.80, -3.43) -

Service (S, L) (12.99, 13.74) (-6.58, -5.92) -
(L, S) (18.61, 18.91) (-12.46, -11.48) -
(L, L) (9.96, 10.73) (-7.06, -6.80) -

Note: Here ”+” (”-”) means that the change is positive (negative), and ”=” means we cannot

reject the null hypothesis of no change. The confidence region is estimated for the single common

bond price (16.4).
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Table S-11: Compensating Differential from CEO Shirking versus Working

(in $ thousands, Extended Sample)

ρ2 ≡ bt+1 [(bt − 1) γ]−1 ln(α2,pre/α1,pre)

Sector (A, C) ρ2 ∆ρ2
(S, S) (2792, 2995) (51, 125) +

Primary (S, L) (1587, 1668) (31, 51) +
(L, S) (2303, 2471) (1085, 1163) +
(L, L) (1983, 2073) (364, 472) +
(S, S) (7671, 8438) (-1992, -1766) -

Consumer (S, L) (2224, 2400) (317, 368) +
Goods (L, S) (5353, 6165) (1623, 1869) +

(L, L) (4687, 5465) (-2264, -2218) -
(S, S) (4608, 5074) (50, 87) +

Service (S, L) (2542, 2840) (23, 97) +
(L, S) (8758, 9929) (-6960, -6722) -
(L, L) (5916, 6610) (-3985, -3885) -

Note: Here ”+” (”-”) means that the change is positive (negative), and ”=” means we cannot

reject the null hypothesis of no change. The confidence region is estimated for the single common

bond price, 16.4.
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Table S-12: Administrative Cost (in $ thousands, Extended Sample)

τ1 ≡ γ−1 bt+1

bt−1
lnα2,pre

Sector (A,C) τ 1 ∆τ 1

(S,S) (2191, 2330) (1398, 1406) +
(S,L) (1341, 1404) (2570, 2582) +

Primary (L,S) (4466, 4599) (2780, 2910) +
(L,L) (4311, 4398) (2921, 3012) +
(S,S) (1764, 2258) (-679, -555) -

Consumer (S,L) (1235, 1363) (949, 972) +
Goods (L,S) (4393, 5072) (1724, 2113) +

(L,L) (6708, 7353) (-214, -130) -
(S,S) (2639, 2990) (1036, 1065) +
(S,L) (2641, 2875) (-76, -29) -

Service (L,S) (9803, 10689) (-1756, -1624) -
(L,L) (9441, 9949) (-1240, -1218) -

Note: Here ”+” (”-”) means that the change is positive (negative), and ”=” means we cannot

reject the null hypothesis of no change. The confidence region is estimated for the single common

bond price, 16.4.
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Table S-13: Aggregate Agency Costs (in $ thousands, Extended Sample)

τ2 ≡
∑2

s=1 ϕs,preEs,pre [ws,pre(x)]− τ1

Sector (A, C) τ 2 ∆τ 2

(S, S) (72, 210) (3, 11) +
Primary (S, L) (33, 96) (-18, -6) -

(L, S) (68, 201) (68, 198) +
(L, L) (45, 132) (47, 137) +
(S, S) (259, 753) (-189, -65) -

Consumer (S, L) (67, 195) (13, 37) +
goods (L, S) (357, 1036) (192, 582) +

(L, L) (340, 985) (55, 140) +
(S, S) (183, 534) (-44, -15) -

Service (S, L) (122, 356) (24, 71) +
(L, S) (460, 1345) (95, 227) +
(L, L) (265, 772) (10, 32) +

Note: Here ”+” (”-”) means that the change is positive (negative), and ”=” means we cannot

reject the null hypothesis of no change. The confidence region is estimated for the single common

bond price, 16.4.
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Figure S-1: Empirical Compensation Schedule and Excess Return Density

(Balanced Sample)
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Note: The plots present the non-parametrically estimated density of excess returns and the op-

timal compensation of firms with small size and low leverage in the Consumer Goods sector. ”Pre”

and ”Post” indicating the pre-SOX (2000-2001) and post-SOX (2004-2005) eras. The compensation

of both eras is anchored at bond prices equal to 16.5 (bt) and 16.4 (bt+1).
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